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Abstract

In this paper we describe a method to register Computed
Tomography (CT) data with planar film radiographs. Previ-
ous methods applied to the problem of CT-radiograph reg-
istration rely on determining the correspondence between
occluding contours of the 3D surface in the CT data with 2D
contours in the projection image. These methods implicitly
assume that the correspondence is accurate, ignoring fun-
damental nonlinear differences in the underlying measure-
ments. In contrast, our emphasis has been to directly exploit
the relationship between imaging devices. This is performed
by registering radiograph data with intensity-corrected sim-
ulated radiograph data derived from CT measurements. We
will show that by exploiting the physical relationship be-
tween CT and radiograph measurements we can significantly
improve registration accuracy. Concomitantly, we detail the
relationship between CT and radiograph measurements and
the primary factors influencing discrepancies between sim-
ulated and real radiograph data.

1 Introduction

Registration of medical data from different imaging devices
has proven to be an important tool for extracting additional
information for diagnosis, therapy, and surgery. For ex-
ample, high resolution, three dimensional, structural med-
ical images, such as data from X-ray computed tomography
(CT) and magnetic resonance imaging (MR), are capable of
clearly delineating many anatomical structures. These im-
ages may be taken prior to a surgical operation for diagnosis
and localization. The surgeon may use such images to plan
a surgical procedure. Then during surgery, 2D ultrasound
images or fluoroscopy data may be used to guide the surgeon
through his plan. To effectively execute the plan, the intra-
operative images need to be registered with the pre-operative�
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images. However, the poor resolution of the intra-operative
images, the differences in the sensor characteristics, and the
changes in the patient’s position and state make this a chal-
lenging task.

Historically, this registration has been performed using
stereotactic frames, external markers, and 3D positioning
devices. These interventions pose a burden on the surgeon
and patient and limit the accuracy and generality of the reg-
istration. The ideal solution is anatomy-based patient reg-
istration. Several methods have been proposed to perform
this type of image-guided registration, but in general, these
methods are sensor-independent and do not address one of
the most significant distortions between data sets: distortions
due to differences in sensor measurements.

This paper specifically addresses the problem of regis-
tering X-ray CT data with planar film radiographs. Our
emphasis has been to directly exploit the relationship be-
tween imaging devices. This is performed by registering ra-
diograph data with intensity-corrected simulated radiograph
data derived from CT measurements. We will show that
by utilizing the physical relationship between CT and radi-
ograph measurements we can significantly improve regis-
tration accuracy. Concomitantly, we detail the relationship
between CT and radiograph measurements and the primary
factors influencing discrepancies between simulated and real
radiograph data. This relationship is useful, not only in im-
proving registration, but also to enhance our understanding
of the measurements of the individual modalities, their dis-
tortions and sensor-dependent information. We also intend
to use this relationship to aid our understanding of the more
complex relationship between CT and fluoroscopic images.

We start off by describing previous work in this area and
the strategy we employed to improve the accuracy currently
achieved. In Section 3, we describe the acquisition of our
data and the calibration procedure we implemented to eval-
uate our registration technique. In Section 4, we examine
the relationship between radiographic and CT data. CT data
is used to simulate radiographic data and the factors which
influence the differences between real and simulated data are
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discussed.
Sections 5 and 6 describe the registration technique and

the results. The registration method uses the results of Sec-
tion 4 to exploit the full sensor relationship. The transfor-
mation between a single radiograph and a 3D CT data set is
determined using the simulated radiographs generated from
the CT data. The optimal transformation is the X-ray sys-
tem configuration which generated the simulated radiograph
which is maximally correlated with the original radiograph.
An error analysis is conducted based on the results of the cal-
ibration study. In the last section, we summarize the results
of this research and offer suggestions for future work.

2 Related Work

Registration methods designed for determining the X-ray
system parameters which relate CT data with one or more
X-ray projection images, can be split into two major cat-
egories. In the first category, surfaces in the CT data are
initially extracted. Then, corresponding features in X-ray
images, such as edges or contours, are found. The regis-
tration transformation is then found by minimizing a cost
function which evaluates the proximity between the pro-
jected 3D surface and the 2D contours. This strategy was
used by [7] and [3]. In [8] a similar approach was taken
except only a small number of anatomical features, namely,
boundaries along skull landmarks, were used.

These methods presume the correspondence between CT
data and X-ray projection images is inherent, or minimally,
that a prior stage has performed some kind of calibration to
make this presumption true. The underlying assumption is
that surfaces found in the CT data that are tangent to perspec-
tive rays of the X-ray system configuration, will correspond
to edges in the projection images. There are several limi-
tations of this approach and its general implementation. In
particular, the formal ray integral equation is not used. The
fact that radiographic data is a negative exponential of an
integral is ignored. Similarly, the different sensor resolu-
tions and measurement sensitivities are overlooked. Only
the simpler relationship, between occluding contours of 3D
surfaces and their projections onto the radiograph image, is
used. Information is limited to surface boundaries [7, 3] or
feature extraction [8]. Grey value information is only used
at the level of 3D segmentation and typically this difficult
problem is solved independently to the registration prob-
lem. Usually only specific anatomic structures are found.
This has advantages that only structures which are known to
be rigid are used. However, contours in projection images
do not necessarily arise from 3D surface tangents. View-
dependent supposition of anatomic structures may effect
projection contours in complex ways. When ray integration
is not performed, only a small subset of the original grey
value information is utilized. In structure/contour matching

methods, outliers are often a significant source of error.

Because the underlying relationship between the two data
sets is not exploited, the relationship between the resolution
of the two data sets is also not exploited. Typically 3D seg-
mentation is performed without regard to either CT or X-ray
detector resolution, or the particular X-ray system config-
uration. Surfaces are improperly smoothed and simplified.
Both over and under-sampling are common and partial vol-
ume effects cannot be modeled. Methods are often tested
on simulated data or verified by dependent information. In
[6] video camera images were used to simulate fluoroscopy.
In [3] accuracy is measured in average distance of matched
points, which is not necessarily conclusive. These methods
are advantageous in that they are potentially fast and less
sensitive to changes in patient state or sensor domain. They
perform well in applications where the sensor differences
between images are minimal. If sensor differences are sig-
nificant, they may be usefully applied for fast initial estimate
prediction.

The other major approach to this problem uses voxel
or pixel similarity and includes our method. Methods
which use this strategy do not rely on higher level ex-
traction of features or regions. Such extraction is typ-
ically application-dependent, sensor-dependent, and often
only semi-automated, and therefore subjective. Examples
of multimodal registration methods of this kind are given in
[12, 5]. In [12] a filtering technique is used to find “sensor-
invariant” ridges in image space. Correlation is then used
to find the optimal transformation between data sets. This
is successfully applied to MR and CT data. In [5] MR and
CT data were also registered. Instead of maximizing a cor-
relation function, they minimize the coefficient of variation
of intensity ratios between the two images and devise a sim-
ilarity measure sensitive to this metric. Both investigations
attempt to find features and matching metrics which use the
full data set but are invariant to sensor differences. However,
both investigations are general-purpose; neither exploits the
particular sensors or sensor relationship.

In our approach, voxel/pixel similarity is performed by
simulating radiographic data and then optimizing the match
between simulated and real radiographs. Two other research
teams have been investigating this approach concurrently
with our own. In [11, 1] image-guided radiosurgery is per-
formed by correlating an orthogonal pair of radiographs with
precomputed radiographs. The details of this project have
not been published and are proprietary[1a]. In [9] registra-
tion was performed of CT data with a stereo pair of radi-
ographs. Their work closely follows our own. However, our
objective has been to scrutinize the underlying relationship
between the radiographic and CT data, to achieve the max-
imal accuracy in registration, while the research of [9] was
directed more towards achieving a feasible solution which
could be implemented and tested more efficiently. They did
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not directly consider the intensity and resolution relationship
between simulated and real radiographs. On the other hand,
they present a more elaborate procedure for finding an initial
estimate and for more efficiently optimizing the correlation
between the CT data and a stereo pair of radiographs.

3 Experimental Setup

In our experiment, planar X-ray film was taken of a dry femur
bone rigidly attached to a precisely machined calibration
object. The calibration object was composed of two 3/8 inch
plexiglass sheets, attached at their ends at a right angle. Each
sheet contained a grid of 6x15 embedded stainless steel balls
with 5/32 inch (3.97mm) diameter.

X-rays were taken with a Siemens SIRESKOP4 with 125
KV tube voltage, at roughly 40 inches between the X-ray
source and the screen film cassette. The film was Fuji
Super HR-G 14x17 inch double emulsion and the inten-
sifier screen was a Kyokko GH1 made by Kasei Optonix
Ltd. The X-ray film was then digitized using IBM’s Time-
Delay-and-Integration Imaging System. This system is a
high resolution digitizing scanner which can capture im-
ages at a spatial resolution of 3072x4096 pixels with a dy-
namic range of 69.65 DB and state-of-the-art noise suppres-
sion. The digitized images were roughly 2000x3000x12-
bits (only 8-bits were ultimately used) with pixel sizes
on the order of 0.078x0.075 ����� . X-ray computed to-
mography data of the same femur/calibration object was
taken on a GE9800 scanner. The CT data was stored in a
158x512x512x8-bit matrix, with slice thickness 3mm, and
pixel size 0.390625x0.3906525 ����� .

To test our registration method, the markers of the cal-
ibration device were used to determine the parameters of
the X-ray system. To perform this registration, we used the
calibration procedure described in [8] and detailed for this
application in [2]. This calibration determines, in addition
to the rigid transformation between the CT and radiograph
world, the intrinsic parameters of the X-ray system: the pro-
jection image � and � scale factors and offsets. The scale
factors are implicitly related to the focal length of the X-ray
system, or in other words, the distance between the X-ray
source and the film. The root mean square error for the final
calibration was less than �
	�� mm for both configurations.
Monte Carlo simulations in which the data were perturbed
using normal deviates, show that for Configuration 1, the cal-
ibration error is greatest along the optical axis. This suggests
a possible error in the focal length.

4 The Relationship between Radi-
ographs and Computed Tomogra-
phy

In order to develop better methods to register radiographs
with X-ray CT, we have simulated radiographs from CT data.
The details of the radiograph simulation are given in [2]. In
this section, we examine the intensity relationship between
radiographs and simulated radiographs computed from CT.
Understanding this relationship provides an important link
which we will exploit to improve the methodology for the
registration of radiographic and CT data. Several investiga-
tors have studied methods for registering CT and radiographs
or X-ray fluoroscopy images but to our knowledge, the em-
pirical relationship has yet to be delineated.

In the outputs shown in the top of Figures 1-2, simulated
and real radiographs are shown for two data sets. The in-
tensity values of the real radiograph represent the digitized
values of the intensity transmitted by the film. The intensity
values of the simulated radiograph represent the ray sum of
the CT values along the ray from the X-ray source to the radi-
ograph plane. These were computed from sufficiently small,
uniformly spaced samples along the ray through the CT data,
using trilinear interpolation. In this initial evaluation, we
have not yet exploited the complete physical relationship
between CT values and digitized radiograph measurements.
Since the film is darkest where the most light strikes it, and
the ray sum, by itself, is just the sum of attenuation, the im-
ages appear in many ways similar - both are brightest where
the least amount of X-rays were transmitted. However, as we
will show in this section, there are several important factors
that can be modeled to improve this similarity.

We have determined four primary factors effecting the
intensity relationship between the simulated and real radi-
ographs. They are from the:

1. formal intensity relationhship: the ray integral equa-
tion, linearly-scaled measurements, initial and final in-
tensities, and film characteristics,

2. differences in domain,

3. limitations in CT resolution and partial volume effects,

4. variations in X-ray source spectrum and the Heel Effect.

We will describe each factor, its effect on the intensity re-
lationship, and how it effects the design of a registration
method for radiographic and CT images.

4.1 Formal Intensity Relationship

The initial simulations shown in the top right of Figures 1-2
are based on the simple ray sum of the CT values. However
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this does not fully model the physical generation of digitized
film measurements. In particular, assuming a narrow, mono-
chromatic X-ray beam passing along a ray from the X-ray
source to the detector, the relationship between the input and
output intensity, is the ray integral of the linear attenuation
coefficients 
�������������� :

������� �!��"$#�%'&)(+*-,�.�/$.102/43�56 3�7)5�08.:9�;$<'= >?= @)A8BC<'B�>'BD@)E
Film effectively measures the transmitted intensity,

�F�
. The

optical density ( GIH ) of the film is defined to be theJ$K�L � � "$#NM � � � and this is linearly proportional to the log of
the relative exposure, for the straight-line portion of the
H-D or characteristic curve of the film. Since exposure
is intensity over time, relative exposure is equivalent to
the relative intensity for the same exposure time. Thus,J$K�L � �'O)P B

"1��Q ORP�S'T"$# M �)� � U J$KVL � �W����� M �
XZY"4# � , where U implies lin-
ear proportionality. Because of the large bandwidth of our
digitizer, we believe our digitized measurements are linearly
related to the transmitted intensity of the film. Similarly,
lack of CT calibration, bit reduction, and unit conversions
from linear attenuation to Hounsfield units, are also all linear.
Therefore we can derive the following relationship between
the measured radiographic intensities,

� O and the measured
attenuation coefficients 
\[ , of our CT data,

J$K�L � ]^Z_ � Oa`cb _ � � ^ � J$K�L � ^
d�e�f�g �Chji ORP >
k ^
l 
 [ `cb l�m �D� `cb �

��n�	 ] �where the constants ^ " � b " are from the following linear rela-
tionships:

[ o�pV�rq�p ] Optical density is the log of the inverse of the
transmitted intensity relative to the intensity incident
on film, and the digitization is linearly related to trans-
mitted intensity.

[ oNst�rq-s ] For the straight-line portion of the H-D curve of
the film, the optical density is linearly related to the log
of the relative exposure.

[ oNu ] The relative exposure, and therefore the relative inten-
sity incident on the film depends on the initial intensity
emitted from the source.

[ o�vw�rq v ] The numbers output by the CT scanner are linearly
related to the linear attenuation coefficients used in the
line integral equation. This may be due to the need for
calibration, conversion in units, or bit reduction. The
constant offset b l can probably be ignored, since 
 P " O
is zero.

Equation(4.1) can be rewritten as,

J$x � � O `cy � U i ORP >

 [

where y is a constant. The derivation and relations betweeny and the constants of linearity, and the constants ^ " � b " are
given in [2].

Furthermore, if we would like to clip intensity values
which are nonlinearly related because they are above or be-
low the straight-line portion of the H-D curve, we can add
the following cut-offs:

z'{ i ORP >

 [}|c~��������W� �W��" [ � ~������w�
� ����" [ � i O)P >


 [
z'{ i ORP >


Z[}� ~ � �V���W� � ��" [ � ~ � �����
� � ��" [ � i O)P >

Z[��

where
� ��" [ replaces � O)P > 
Z[ in the previous equation. This

is applicable only if we have a suitable signal to noise ratio.
Notice, because the sum of the attenuation coefficients is
inversely related to the amount of X-ray transmission the
lower cut-off operates like an upper bound and similarly, the
upper cut-off acts like a lower bound. For our radiographs,
i.e., for the H-D curve of our film, only the upper cut-off ~ �
appears to be relevant.

We have written the equation in terms of a tranformation
of our radiographic data to our “simulated” radiograph for
two reasons. First, since the resolution of our radiographic
data is superior to our CT data, we would like to perform
our calculations using the better data. Secondly, from a
computational point of view, we would like to perform cor-
rection one time on the true radiograph, rather than for each
simulation in the correlation tests. On the other hand, for
visualization only, it may be useful to perform the inverse
transformation, since there is greater familiarity with real
radiographs.

4.2 Differences in Domain

A potentially significant difference between simulated and
real radiographs can arise because of changes or differences
in the patient or environment. Even in our controlled envi-
ronment, where the environment was fixed, these differences
were manifested in Configuration 2. The calibration object
was not completely in the field of view of the CT scanner. As
a consequence, both ends of the calibration plate are visible
in the actual radiograph and not in the simulation. Domain
differences are inevitable. Registration methods designed
for this application must be able to withstand substantial
domain differences to be effective.

4.3 Resolution Limitations

The third factor effecting the intensity relationship between
the simulated and real radiographs arises from the limitations
in CT resolution and the effect this has on the simulated radi-
ograph. This is pertinent, not only in avoiding the matching
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of blurred data with data at a higher resolution, but also in
needlessly matching more data than can be usefully consid-
ered. In the simulated radiographs of the previous section,
vertical blurring is apparent because, the vertical image axis,�� , is roughly aligned with the z-axis, or slice dimension, of
the CT data.

To compensate, in general, for this type of resolution
discrepancy, the resolution limits of the simulated radi-
ograph is determined based on the resolution of the CT data,�1� %'�W� �< �r�

%'��� �
> ���

%'��� �
@ � in mm/pixel, and the initial estimate of

the X-ray configuration for computing the simulation. As-
suming orthogonal projection, the optimal resolution for an
image whose optic axis is aligned with one of the axes of the
world, is simply the resolution of the world in this direction.
When the image intersects the world along some direction�� � � � < � � > � � @ � , we would like the resolution to reflect the
projection of the world resolution onto this directional vec-
tor. We model this effect by assuming the world resolution
is elliptical with principal axes aligned with the sampling
axes and whose magnitudes are related to the respective half
resolution of each axes. In particular, let the resolution of
the 3D world be represented by the ellipsoid:

� ��1� %'� � �<
M ��� � ` � ���� %?� � �>

M �V� � ` � ��1� %'� � �@
M �V� � � ] 	��

The resolution in the 2D projection space, is defined to
be the diameter of the ellipsoid in each projection direction,� �� � �� � . This can be computed by finding the intrinsic para-
meters � � and ��� such that the points � � < �

� � � > �
� � � @ �

� � and� � < ����� � > ����� � @ ����� are on the ellipsoid. The resolution of the
2D projection space is then the diameters of the ellipsoids at
these points,

� %'� " [ P Q)��� � �
����� ];

���R� 7 A2�; O
�C� 08/��� � A � ` ;

����� 7 A �; O
�D� 02/� � � A � ` ;

���r� 7 A8�; O
�D� 08/�-� � A �

�����

� %'� " [ P Q)��� � �
����� ]; �

���1 
A8�; O

�C� 08/� � � A � ` ; �
�C�  
A8�; O

�D� 02/� � � A � ` ; �
���1 
A2�; O

�D� 08/� � � A �
�����

where ¡a¢£¡ is the second norm. An elliptical resolution is
reasonable, since the resolution along directions other than
the principal axes should reflect the ability to interpolate
using the values along both axes. This is similar to the mul-
tivariate case in which we know we have white noise with
a given standard deviation along each axes; the standard
deviation in 2D is elliptical. One might consider the resolu-
tion in 2D to be the resolution of the pixel quad. However,
when the projection direction runs diagonally between the
two resolution axes, this suggests that the resolution actually
decreases, since the Euclidean distance of the diagonal of
the quad is its largest cross-section. This does not take into

account the progressively more information that is obtained
by neighboring pixels as the projection direction moves be-
tween the original orthogonal sampling directions for the
case of trilinear interpolation.

In the real case, we do not have orthogonal projection,
although, as previously discussed, the distance between the
X-ray source and detector is relatively large compared with
distances in the image. More importantly, the distance be-
tween rays upon entering the CT-data and exiting must be
similar. This depends on the dimensions of CT data relative
to the X-ray configuration, and ultimately on the size and
location of the body. Generally a patient is placed as close to
the detector plane as possible to minimize perspective distor-
tion. We have chosen to ignore these complications and to
use the worst case estimate based on orthogonal projection.

We would like to make one comment. This resolution
limitation reflects the limitations of the CT data to clearly
“see” 3D objects which are smaller than the sampling size.
This is evident with our data set; it was difficult to accurately
discern the location of the markers whose diameter size was
only slightly greater than the slice spacing. This in turn,
limits the resolution of the simulated radiograph. However,
because the simulated radiograph is composed of ray sums,
and these sums pass through the various voxels at different
locations, in cases where there are multiple objects or objects
whose boundaries are crossed multiple times in any one
ray, the radiograph may provide information at a higher
resolution than is reflected in the analysis here.

Alternatively, we could attempt to improve the resolu-
tion of the simulated radiograph using more sophisticated
techniques to interpolate the CT data. Our approach has
several advantages. Improving the interpolation requires
assumptions that depend on the object characteristics and
the acquisition. Furthermore, since our proposed matching
scheme relies on simulating many projections, we would
like to limit the size and time required to simulate each radi-
ograph. Finally, depending on the assumptions that we are
able to make, it is not clear to what extent we can add real
information.

Limitations in the resolution of the projections used to re-
construct CT data may cause an artifact known as the partial
volume effect[4]. In our domain, this may be the cause of
an under-estimation of the intensity of the markers in the
CT data, since the marker size is on the order of magni-
tude of the slice spacing. This should also be corrected for
by the limited resolution of the simulated projection which
re-enacts the same type of averaging as occurred originally.
However, it is also possible, that the marker brightness is due
to a greater sensitivity of the film to high attenuation than
the CT scanner, or a a consequence of the different energy
levels used in the two mediums.
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4.4 Variations in X-ray Source and the Heel
Effect

The fourth primary factor effecting the intensity relationship
between the real and simulated radiographs is apparently due
to differences in the energy spectrums of the X-ray sources
of the two modalities. This is extremely difficult to quantify.
Since the local attenuation coefficient varies with energy, we
need more information than we have from a single CT scan
to model the effects of different energies. This is further
complicated if we would like to consider the full energy
spectrum and the changing energy spectrum as the X-rays
traverse the medium. It does not appear necessary to model
this level of complexity for the purposes of registration.

However, there is significant spatial variation in intensity
apparent in the real radiograph that may be more easily
explained. In both real radiographs, as compared with their
respective simulations, the images appear to get brighter as
you move from the bottom to the top of the image. We
attribute this to the anode heel effect. In addition to the
polychromatic nature of X-ray sources, the intensity of many
diagnostic X-ray sources varies from one side of the source
to the other. This is a physical property of the X-ray source
because of the way it is constructed. Electrons produced by
heating a tungsten filament strike a target which absorbs the
electrons and emits X-rays. Because the target, or anode
assembly, is mounted at an angle to the filament, or cathode
assembly, the X-ray intensity decreases from the cathode to
the anode side of the beam. This relative decrease may be
as large as 25 percent.

This effect is seen vertically throughout the images. It
appears more significantly where the bone and markers are
present, but it is harder to quantify since its effects depend
on the variations in attenuation coefficient with energy. This
effect is not evident in the simulated radiograph. We expect
that the best way to correct for this phenomena would be
through calibration of the X-ray system using film obtained
with no objects in the field of view. This information could
then be used to replace ^
d in equation[4.1]. However, since
our objective is to design registration methods, we note that
the effect is, for the most part, monotonic and gradual across
the image. This implies that although raw image intensities
are effected, metrics such as edge detectors would still be
effective since they are invariant to gradual intensity fluctu-
ations.

5 Registration of Radiograph and CT
data

In this section, we describe a method to register radiograph
and CT data using simulated radiographs. We use the model
developed in the previous section to improve the intensity

Figure 1: Intensity Matched Real and Simulated Radi-
ographs - Configuration 1, Left image pair is the original
and simulated radiographs. Right image pair is correspond-
ing intensity corrected original and simulated radiographs.

Figure 2: Intensity Matched Real and Simulated Radi-
ographs - Configuration 2

relationship between real and simulated radiographs. We
then analyze the accuracy of this approach compared with
the calibration results. Finally, we examine the robustness of
our approach by testing the sensitivity to intrinsic parameters
and resolution and by examining the smoothness of our cost
function over the search space.

5.1 Intensity Correction

The right pair of images in Figures 1-2 show the results of
correcting the intensity relationship and resolution between
the original and simulated radiographs for the two config-
urations using the formulations described in the previous
section. The left pair of images are the original (far left) and
simulated (second from left) radiographs as discussed in the
previous section. On the right, the intensity matched origi-
nal and simulated radiographs are shown, including the film
cut-off and sampling of the original radiograph. Notice how
segmentation performed without intensity matching would
have a difficult time matching the femur outlines in both
images. Even if adaptive thresholding is capable of finding
the femur in the original real radiograph, which is possible,
this outline is narrower than the outline in the simulated radi-
ograph because the peak of the intensity gradient is effected
by the nonlinear intensity scaling. This is also clearly seen
in the marker size, which changes from the original to the
intensity-scaled version. In this case, the resolution match-
ing also plays a role, since the vertical resolution in the real
radiograph is reduced.

Figure 3 shows 2D histograms of the intensity relationship
between the original and simulated radiographs. In these
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histograms, the intensities in each radiograph are linearly
scaled to 8 bits. The two images are matched point-wise
and a histogram of the number of points which have each
pair of intensities, � ��� O "8Q � �W��" [ � is computed, where

��� O "¤Q
is the intensity in the original radiograph, and

�W��" [ is the
intensity in the simulation. The plots show this histogram,
by indicating with color, the number of points with each
intensity pairing. The smallest number is represented as
dark blue and the largest by red.

In the top of Figure 3 the 2D histograms for Configuration
1 are shown. The left plot shows the original histogram be-
fore intensity correction, while the right shows the histogram
after correction. Although significant information is lost due
to the relatively poor resolution of the CT data, the corrected
histogram is significantly more linear than the original.

In the lower portion of Figure 3 the 2D histograms for
Configuration 2 are shown. The middle images show the
original and corrected histograms as before. However, be-
cause of the differences in domain, the corrected histogram
has a “shadow.” We verified this by computing the his-
togram for the part of the image without this problem. The
histogram is shown in the lower left; the image section we
used is shown by two boxes outlined on the simulated X-ray
in Figure 2. The histogram still appears to saturate - the
original radiograph seems to have higher intensities which
are not represented in the simulation. We hypothesize that
this is a manifestation of the Heel Effect. Again, we took
only a subset of the images - this time limiting the image to
lower box shown in Figure 2, the part of the image near the
center of the image detector. The histogram for this subset is
shown in the lower right. The results support our hypothesis.
It is also interesting to infer from the 2D histogram the rel-
ative intensity resolutions of the two data sets. Notably, the
simulated radiograph contains significantly less information.

5.2 The Similarity Metric

Since domain differences between images are potentially
unavoidable, edges are extracted from the intensity matched
radiographs. Images are normalized and filtered using a hor-
izontal and vertical 3x3 Sobel filter. The output of this edge
detection is two grey values,

k¦¥
< �
¥
> m , indicating the gradi-

ent in each direction. Gradient correlation is then performed
using the following equation,
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where the superscripts indicate (o)riginal or (s)imulated im-
age, and § is a spatial index into the images. It is not correct
to take the magnitude of the gradient dot product, since a
negative gradient product indicates opposite gradient direc-
tions and therefore dissimilarity. On the other hand, since
domain differences are expected, we do not want to penalize

Figure 3: 2D Histograms of Intensity Relationship: Configu-
ration 1, Top: original intensity relationship (left), corrected
intensities (right) Configuration 2, Middle: original intensi-
ties (left), corrected intensities (right). Bottom: eliminating
image portions with different domains (left), eliminating up-
per image where heel effect occurred (right).

a match because of the degree to which gradients do not
agree. Therefore, we accumulate gradient product only if
the product is positive indicating some similarity in the gra-
dients at that location. Finally, we normalize our measure
based on the sum of the gradient products of each image by
itself, to obtain the absolute correlation coefficient.

To find the optimal rigid transformation, the maximum
gradient correlation between the original and simulated,
intensity-corrected radiographs was searched using Powell’s
multidimensional direction set method [10]. We assume
that a good initial estimate is available. This is reason-
able since surface/contour matching techniques and semi-
automatic implementations have successfully and efficiently
been able to perform this step. In addition, we found that
initializing the directions so that the translational parameters
are searched along the three axes of the projection space
was advantageous. This was implemented using the initial
estimate to compute the projection space axes.

An important parameter of Powell’s method is the stop-
ping criteria which signals that the algorithm has converged.
In this case, failure to decrease the gradient correlation by
some fractional tolerance, is used to determine whether to
stop. For this reason, the absolute correlation coefficient
is used, so that the magnitude of the fractional tolerance is
meaningful.
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Pertubation 1 Perturbation 2 Perturbation 4
Initial Final Initial Final Initial Final

.1 .0001 .1 .0001 .1 .0001
Mean 13.0 2.6 .96 25.9 3.00 1.91 51.5 111.4 5.2

x 9.3 0.17 .27 18.3 0.34 0.54 35.6 2.9 1.0
y 9.0 0.70 .83 18.5 2.48 1.71 37.3 20.9 5.1
z 0.8 2.49 .40 1.8 1.67 0.67 4.2 109.4 0.7

Tx .48 6.0 .89 1.2 14.4 1.8 2.4 64.5 44.7
Ty .52 8.8 .35 1.0 2.5 0.6 1.6 8.5 2.1
Tz .65 1.2 .25 1.1 2.0 0.4 2.9 111.9 4.2¨
< .018 .001 .0003 .041 .002 .0005 .07 .004 .004¨
> .013 .005 .0006 .055 .015 .0001 .06 .048 .048¨
@ .019 .008 .0006 .034 .004 .0012 .07 .041 .001

Correlation .9985 1.0000 .9983 .9999 .8597 .9922

Table 1: 3D and Parameter Error for Low Resolution No Noise Case

6 Results

To evaluate the error in the registration, we computed the
3D positional error for random points in the 3D coordinate
space viewed by the radiograph. For each configuration,
we used a cubic region in CT or world space, centered at
the femur at the vertical position in the femur which was in
the vertical center in the radiograph. The assumption is that
the radiograph used for 3D localization views the object of
interest. The cubic region was 10cm on each side. We took
100 random 3D points in the cube and compared these with
their locations as estimated by the optimization. Finally, we
evaluated the components of these errors with respect to the
coordinate axes of the projection space.

We performed two types of tests. To test our implementa-
tion, its accuracy, robustness to initial estimate,and tolerance
to the stopping condition, we performed tests using a simu-
lated projection instead of the actual radiograph. This is the
case with no noise except resolution limitations. The results
are shown in Table 1. Three studies of the no noise case
were conducted. In each study, we reduced the CT data set
to (79x64x64) and the radiograph size to (47x39). This cor-
responds to a CT resolution of (6.04mm,3.17mm,3.17mm)
and a radiograph resolution of (3.8mm,6.07mm). For each
study, we performed 5 trials with random initial estimates in
the range © ] ��� for translation parameters and © ])ª %W« � %W%for rotation parameters, for Perturbation 1, ©¬� mm or degree
for Perturbation 2, and ©®­ mm or degree for Perturbation
3. For each study we also computed the results for two dif-
ferent stopping conditions, a fractional tolerance of 0.1 and
0.0001 in the correlation. The table shows the resulting 3D
and parameter errors.

First, we point out that the method can tolerate signif-
icantly more rotational error than translational error. Al-
though not shown here, the results for the same perturbation

cases with reduced error in the initial estimate of the ro-
tational parameters are very similar, except the initial 3D
positional errors are much smaller. Notice also, since we
have relatively large rotational error, the initial error in X
and Y is significantly greater than the error in Z ,the optic
axis.

The next observation we would like to make is that the
parameter error is not a useful measure in this case. This
makes sense, since the origin of the projection space coordi-
nate system lies at the X-ray source, whose position can be
moved by a relatively large factor without the same effect
on localization error. Lastly, we observe, that the method is
very sensitive to the range in the initial estimate and this can
be partially overcome by decreasing the fractional tolerance
used as a stopping condition. However, this implies that the
method is vulnerable to noise in the data, which will make
it difficult to obtain the optimal solution as the size of the
perturbation of the initial estimate increases. Notice, the
error in the 3D components of the localization error for the
larger perturbations reflects the resolution limitations in the
data - in this case, the y-axes is roughly aligned with the CT
slice or vertical radiograph spacing which was on the order
of 6mm, and the z-axes is the optical axis for which a single
radiograph contains little information.

Table 2 show the results of the registration method ap-
plied to the real radiographs and the full CT data set. As we
discussed in the study using simulated data, i.e. data with
no noise, only small perturbations in the initial estimate are
acceptable. Furthermore, high accuracy in the correlation is
necessary; for these tests we set the fractional tolerance to
0.001, and the initial estimate perturbation size to ©®� mm or
degrees. For initial estimates greater than ©¯n mm or degrees,
the method did not typically reach the optimal solution. We
assume here that a good initial estimate is given, either by re-
initializing Powell’s method, by implementing hierarchical
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Configuration 1 Configuration 2
Initial Final Initial Final

Mean 25.3 2.82 25.9 .78
x 20.6 .58 18.3 .61
y 14.1 1.66 18.2 .44
z 3.5 2.20 1.8 .22

Max 26.4 3.2 27.3 .93
x 22.7 .89 19.7 .67
y 14.1 1.91 20.1 .58
z 4.5 2.64 2.6 .27

Correlation 0.7545 0.6115

Table 2: 3D Error for Full Resolution Radiograph/CT Reg-
istration

optimization, and/or using contour/surface matching tech-
niques. For this research, we are primarily interested in the
accuracy that can be achieved.

The results are mixed. For Configuration 2, the 3D error
is less than 1mm. The optimal correlation was within the
tolerance of the correlation for the “true” solution. For Con-
figuration 1, however, the correlation for the “true” solution
was only �
	�°V­�±�² , while the optimal correlation was �t	�°�³'n
­ ,
indicating that a simulated radiograph was generated which
was more highly correlated than the calibrated solution. This
has two potential explanations. First, our calibration results
may include error in the intrinsic parameters, thereby cor-
rupting the results here. In fact, our calibration results of
the intrinsic parameters from Configuration 1, were indeed
questionable. This is corroborated by the error components
which are greatest along the optic axis. Second, the error
along the optic axis and in the vertical direction, are rea-
sonable given the limitations of a single radiograph with a
focal length of 1000mm and vertical spacing of 3mm. This
was confirmed by visual inspection of the objective func-
tion over translation space; a nearly constant-value ridge
occurred along the optical axis. This is shown in Figure 4 in
which the axes coming out of the page is ´ @ . In the no-noise
case (upper surface), a peak is barely discernible at the ap-
propriate location (0,0), while for the real radiograph (lower
surface), the peak is off center, in the fore-ground, i.e. along
a different position in the optical axis.

7 Conclusion

In summary, we have verified that by using intensity-
corrected simulated radiographs, a single planar film radi-
ograph can be registered to CT data at high accuracy. For our
two test radiographs whose vertical axes are nearly aligned
with the CT slice dimension and CT data with slice thickness

Figure 4: Surface plot of the objective function for Config.
1 over translation space �1´ > �r´ @ � . Plot shows the ridge along
the optic axis peaking at the calibration solution for the no-
noise case (upper surface where absolute correlation values
are higher), and peaking at a different position along the
optic axis for the real data.

of 3mm, a maximum error of less than 1mm in the horizontal
direction, less than 2mm in the vertical direction, and less
than 3mm along the optic axis was achieved. We assume
intrinsic parameters can be accurately measured and other
methods can be used to efficiently find a good initial estimate.
Previous methods have relied on multiple radiographs, have
been tested only by simulations, and have not exploited the
full sensor model.

We have also detailed the relationship between CT and
digitized planar radiograph film measurements. We have
described a model for simulating radiographs from CT data
for registration with real radiographs. To optimize the in-
tensity relationship between simulated and real radiographs
the linearity of the measurements, film characteristics, and
relations between initial and final intensities are utilized to
derive a formal mathematical relationship between measured
attenuation and digitized planar film. Other factors influenc-
ing the discrepancy between simulated and real radiographs
were addressed including the differences in domain, lim-
itations in CT resolution and partial volume effects, and
variations in X-ray source spectrum and the Heel Effect.

For future work, we propose to confirm our model and
registration method using more test cases including different
and more realistic patient data, and other radiographic sys-
tems including bi-planar radiographic devices and different
film/screen combinations. It would also be useful to corrob-
orate our model with calibration information and possibly
pre-calibrate to remove known error sources such as domain
and source intensity differences and intensity variations due
to the Heel Effect. One interesting potential experiment is
to register CT data with scout data from the same scanner.
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This eliminates several factors influencing the simulation
error such as X-ray source spectrum and some calibration
errors but would allow us to evaluate the potential accuracy
of the radiograph simulation.

Our ultimate objective is to combine this type of highly
accurate but inefficient registration method with a classical
contour/surface approach. In this way, we would be able to
achieve both the computational speed and accuracy neces-
sary for clinical applications. Lastly, we would like to use the
relationship derived for CT and radiographic film to derive
the more complex relationship between CT and fluoroscopy.
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