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Abstract

Background modeling is a common component in video
surveillance systems and is used to quickly identify regions
of interest. To increase the robustness of background sub-
traction techniques, researchers have developed techniques
to update the background model and also developed proba-
bilistic/statistical approaches for thresholding the difference.
This paper presents an error analysis of this type of back-
ground modeling and pixel labeling, providing both theoreti-
cal analysis and experimental validation. Evaluation is cen-
tered around the tradeoff of probability of false alarm and
probability of miss detection, and this paper shows how to
efficiently compute these probabilities from simpler values
that are more easily measured. It includes an analysis for
both static and dynamic background modeling. The paper
also examines the assumptions of Gaussian and mixture of
Gaussian models for a pixel.

Keywords:  Surveillance, Background Modeling, Er-
ror Analysis, Markov Chain, Equilibrium, Mixture Gaus-
sian, EM algorithm, ROC curve.

1 Introduction

Video surveillance is a well studied problem with both sys-
tems and new approaches still being developed, [1, 2, 3, 4, 5,
6,7,8,9,10, 11, 12]. include background modeling, detec-
tion and foreground (a.k.a. target) versus background label-
ing. The numerous approaches just cited differ in the type
of background model used, the procedure used to update the
background, the detection process and the labeling/tracking
process.

One can view most systems as having three separate phases
of processing including low level (adaptive change detec-
tion, per pixel labeling, and background/threshold updating),
middle level (connecting pixels via some forms of region
growing or merging) and high level (more complex processes
such as temporal-tracking or target recognition). Wallflower,
[12], further divides its discussion of the low level processing
into three levels: pixel level performs probabilistic predic-
tions of the expected background; region level fills in homo-
geneous regions of foreground objects; frame level detects
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sudden, global changes in the image and may swap in bet-
ter approximations of the background. While the region and
frame levels are also very important, this paper concentrates
on the pixel level. The approach does model the use of feed-
back from higher level processes but it does not model how
the feedback is computed from or depends upon the low level
results.

The primary goal of this paper is to show how to use
statistic analysis to more formally set the parameters used
in background maintenance methods. Existing work either
openly admits to setting blending and thresholding param-
eters by hand, e.g. [11, 12], or more commonly, does not
mention how they are set. In this paper, a formal approach
is presented which defines parameters, for a given scenario,
that will achieve a particular false alarm vs miss detection
probability tradeoff. The secondary goal of the approach is
to characterize the sensitivity and range of performance of
background maintenance for a given scenario. The resulting
parameters will, of course, still be dependent on the cam-
era and scenario, but will be determined in a principled way
from data samples.

In Section 2, this paper defines an input distribution model
and background pixel models. A labeler model is also de-
fined, which accounts for the feedback from higher level
system processes. Section 3 derives the probability of false
alarm and miss detection in terms of more directly com-
putable terms. An Expectation-Maximization (EM) algo-
rithm is used, in Section 4, to recover the model of the sys-
tem input distribution. Section 5 introduces an equilibrium
analysis that supports the efficient computation of the distri-
bution of the background model. In Section 6, the analyses
on real data verify the models and also show some of their
limitations. Using these models and error analyses, any in-
put distribution can be converted to ROC (Receiver Opera-
tion Characteristic) curves, which allow the end user to ex-
plicitly select the pga/pmp tradeoff (section 7). While ROC
curves can be measured via large amounts of experimenta-
tion, model fitting and equilibrium analysis greatly reduce
the amount of needed data collection and experimentation.
In particular, in section 8, we show that much of the mea-
sured data is non-stationary, and that the data which is sta-
tionary is still not very Gaussian in nature. We then discuss
how to generalize the approach to dynamic models, and the
limitations of doing so.



2 Distribution Model: previouswork
In this paper, we focus our attention on the pixel level. It is
the pixel level processing phase that makes the preliminary
classifications of foreground (target) versus background and
also handles adaptation to changing background. This phase
does not include handling radical changes, e.g. turning lights
off in a room, nor does it group pixels into regions. At this
level, the pixel is considered independent of other pixels and
for most of the paper we simply discuss a single pixel in
image. We also assume that the model is appropriate, that if
large lighting changes occurred some higher level processes
would replace/modify our current background model.

An assumption that underlies in many background mod-
eling approaches is that if each pixel resulted from a par-
ticular surface under particular lighting, a single Gaussian
would be sufficient to model the pixel value while account-
ing for acquisition noise. Since different objects may project
to the same image point (if scene points move) and lighting
can change, some systems want to presume multiple models,
e.g. a Mixture of Gaussians (MOG), per pixel. Existing sys-
tems usually set K, the number of Gaussians, in the range 2
to 5, [13, 14]. Furthermore, for computational reasons, the
covariance matrix is assumed to be diagonal (i.e. uncorre-
lated). Obviously, for the special case K = 1, this gives us
the traditional Gaussian model. We also note that a MOG
can also handle, via approximation, the case when a single
pixel’s intensity uni-modal distribution is NOT well modeled
by a single Gaussian.

Either way, to use a MOG model, we will also need to
assume that each component satisfies a quasi-stationary cri-
terion: the signal is flat fading, i.e. the change in pixel inten-
sity value is slow compared to the update rate of our model.
In particular we presume, for now, that the above equation
for the background model will reach an approximate equilib-
rium before the input signal changes. For MOG models, we
also presume the high-level labeling process will correctly
tell us which part of the mixture to update. Let us briefly
review previous work on background modeling and the stan-
dard approaches.

The P-finder system [1] uses a multi-class statistical model
for the tracked objects, but the background model is a single
Gaussian per pixel. A single Gaussian per pixel is easy to
recover and this type of model is also used in many other
systems. If the model is appropriate then thresholding based
on the standard deviation is statistically well justified. Some
simpler systems even ignore the formal modeling of standard
deviation and simply track the mean or some other models of
central tendency and use an ad-hoc thresholding process.

Other papers have stated that the use of a single “back-
ground” can limit robustness especially when viewing out-
door scenes with considerable clutter, e.g. [11, 13, 14], and
these systems support multiple background models per pixel.
One such model, used in [13, 14] is a Mixture of Gaussians
(MOG). Given the input samples, a mixture of Gaussians is
fit to it. The parametric form of the MOG distributions can

then be used to classify pixels. In [11], a simpler form is used
which tracks only the central values of the two primary distri-
butions for a pixel, but the thresholding procedure is ad-hoc.
These papers draw mostly on intuition and insight and do
not present experiments to justify their multiple background
model assumption.

There are two approaches for maintaining/updating the
background model: multi-sample and per frame processing.
A few approaches, e.g. [10, 13], gather many samples per
pixel (i.e. many images) and then use the multiple sam-
ples to compute statistical models such as Gaussian, mixture
of Gaussians or non-parametric model respectively. These
methods require considerably more memory and processing
and are more complex. They cannot be directly handled by
the analysis presented herein.

For single “Gaussian” model, one only needs to com-
pute the mean and variance. To allow the system to adapt
to changing backgrounds, one needs to compute this over
a window of time. While cheaper than other multi-sample
techniques, true computation of a windowed (running) mean
and standard deviation is still costly because it requires stor-
age of K images (for an temporal window of size ). Since
this approach is statistical in nature, if the input data matches
the model assumption (i.e. Gaussian), setting the thresholds
via the variance estimates is well understood. For these types
of systems, the choice of IV is the critical “blending” param-
eter. Larger N makes the system slow to change but bet-
ter removes random fluctuations. Choosing N is directly
amenable to the approach described herein, but to shorten
the presentation it will not be pursued farther.

The per-frame processing approaches seek to compute an
updated background model for each new frame. This ap-
proach is probably more common because it requires much
less storage and much less computation. The basic idea is to
update the background model via temporal blending. In this
de-facto standard method for background maintenance, the
model is maintained via:

Bt = (1-a)B'+al’ (6]
where Bt is the background pixel at time index ¢ (it is a su-
perscript not an exponent), It the new input pixel and « is the
blending parameter that determines the speed of the forget-
ting old background information. Note that B is generally
not the window mean but it is an estimate of the central ten-
dency of the data over a window. Extending this blending ap-
proach to estimate the sample variance is more difficult and
hence determining threshold(s) for detection is problematic.
Selecting the global detection threshold G' and the blending
parameter « is the primary subject of this study.

In systems with multiple backgrounds, a separate (higher-
level) process often determines which of the many back-
ground to update and then uses equation 1 to update only
that model. The straight forward process we shall use in this
analysis is to update the model which is closer to the input.

While this basic step is quite common in background sub-
traction, there are variations on the blending process, e.g.



systems that change « based on confidence of pixel being
background (or Foreground) and variations that use all inte-
ger approximations to equation 1, e.g. [11]. If the camera
system is not static, e.g. [7], the system will reinitialize its
background model after each camera move and then begin
blending. We note that the analysis herein, which presumes
the system reaches a stable state, may be less applicable to
such stop-and-stare systems.

2.1 Background Modeling Summary

For the sake of simplicity of discussion we presume a two
background model® Let the primary background be Bl(¢),
and the secondary background be B{(¢). We assume the
pixel intensity value is I'*(¢), where the pixel index is ¢. For
grayscale images ¢ = (u,v), for n-channel color it is ¢ =
(u, v, c). Without loss of generality, we presume the input at
the time ¢ — 1 was closest to the primary model Bf,*l(qﬁ).

Given these, we define

Dy(¢) =
Dy(¢) =

I'(¢) = B,(9) O]
I'(¢) — By(9) ®)

if | D} (¢)] < [Di(9)]
it | D} (4)| > [D5(9)
p wheng=s
s wheng=p

In some systems, the update depends on feedback from
upper layers. In particular, we allow, for some process, to
label the pixel ¢ as being in the target set 7" Target or in the

Non-target set V. Then we can define the generalized update
as:

And define variable, ¢, as ¢ = { P
S

and the negated form g =

v [L—alBY) +aTHe) peT
B0 = { - alBI(6) +al'(9) éeN

where o' may be (generally is) smaller than .. And the other
term is updated as

(4)

Bit'(¢) = By(9) ©)

Our error analysis will be dependent on the distributions

of the states of the background models B, and Bs. Note
that for the special case of only one background model, if
o' = «a and the distribution of T is N(u,0?), with only a
bit effort one can show that the distribution of B, will be
N (p, 5%-0?). In this case, we see that decreasing « pro-
duced a more narrow (peaked) distribution in B;,, compared
to the distribution of input 7. Empirically, this general ob-
servation holds for MOG maodels as well although when the
Gaussians overlap significantly the results are less intuitive.

2.2 Labeler Model

We note that most systems use considerable high level pro-
cessing to clean up their initial foreground/background la-
beling. However all these systems still depend on a good

1Generdlization of this two-mixture case to the general MOG case is
straightforward but tediously complex to describe because the various mix-
tures must be reordered based on distance from the current value.
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Figure 1. Two States Markov Model Labeler

initial labeling. The goal of this paper, is to study the error
properties of this first stage labeling.

In addition to updating our background model, we need
to distinguish Non-target (Background) and Target (Fore-
ground) pixels. We model the labeling of a pixel ¢ a Target
pixel at time ¢ if

t t
THg) = { ¢ Di(9) > G'(9) )
0 otherwize

where G*(¢) is the global threshold at time t. For now we
will assume G is a constant. We also assume there is an ideal
labeler Lt(¢), which provides the ground truth labels. We
define a false alarm (FA) to be when T (¢) # 0&L(¢) ==
0, and define a miss detection (MD) to be when T (¢) ==
0&Lt(¢) # 0. Since we are considering only one pixel, in
the remainder of the presentation we drop the explicit depen-
dence on ¢.

We note that the higher level processing can significantly
impact the systems final FA/MD rates which can be quite dif-
ferent from the results presented here. Higher level process-
ing generally decreases the FA while maintaining or slightly
decreasing the MD rate. Still understanding the FA/MD rates
here is critical to insure improving overall performance.

We also note that in systems with feedback, the update
of the background model may depend on the output of the
higher level labeling. Rather than define the details of the
higher levels, which would make the behavior too particular
to a given system, we introduce a high-level model for the la-
beler. We abstract away the details and use a simple Markov
model of the higher level labeler’s behavior. This model is
sufficient to model the temporal (and non-independent) na-
ture of “labeling errors”. In most of the analysis we will fur-
ther reduce the dependence on this high-level labeler model
by assuming we “train” on target free data and then test using
a mixture of targets and background.

Our model is a two-state “Markov Model Labeler”, with
two states shown in figure 1. This model has four transi-
tion probabilities that define its behavior. From this point of
view, we consider it to be independent of the “data”. For
our analysis and simulation, we presume it has access to a
data oracle (i.e. it knows the ground truth. We then define
two parameters to summarize the labeler’s work. They are
Pry, the probability of Labeler’s output is non-target (back-
ground) given the ground truth is target, and Py, the prob-
ability of the Labeler’s output is target given the ground truth
is Non-target (background).

It is obvious that when both Pry and Py are equal to
0, the “Markov Model Labeler” is an “Ideal labeler” which
could exactly distinguish the pixel’s class. If we set these
two parameters to non-zero, then we can model errors in the



system’s higher level classification. With error the transition
probabilities of the finite state machine (FSM) will allow it
to generate sequences of errors, although the sequence length
is independent of actual error (such as a undetected lighting
artifact).

To effectively use this model in the analysis, the tran-
sition probabilities can either be measured (by comparison
with ground truth), and/or manually varied as a secondary
parameter to see how the low level components are impacted
by different higher level models.

3 Error Analysis

The error analysis can be divided into two parts. One is
Probability of False Alarm (pga), the other is Probabil-
ity of Miss Detect (pmp) - In the following analysis, we use
the value at the current time ¢, BY, B. and I* to calculate the
state variables at the next time ¢ + 1, BLt! and B{tL. We let
the L? represent the output of the Labeler (not the oracle) at
time ¢. By definition, B!, is dependent on I*~. Notice, how-
ever, that the random variables B, and B}, are independent
of random variable It. In other words, the pixels value we
measure are not dependent on the current state of the system
and the current state (as opposed to the next state) does not
depend on the current measurement.

Suppose states variable Xt = [B}, Bi] " Where the data
setof B! or BLis {0,1,... ,N —1},and T is the transpose
operator. Note are dealing with a discrete-time process { X? :
t > 0} and a discrete state space, {0,1,...,J —1}.

Given the distribution of p{X]'?}, we can get the pga and
pw- To see this let D% (¢) = min{|Dy(¢)l,|D%(¢)|} when
min{| D} ()|, |DL(#)|} > G, or D%(¢) = 0. Then we have

y4Y)
= p{L'e N|I' € T} )

=Y Do p{L'eNIXL,I'=kI' €T}
k J

p{ X} ]p{I' = k|I' € T}
SopiIt =kt e T} { D p{X}- ]
k J

p{L' e N|X},I' = k,I' € T, D} = 0}
p{D% =0|X},I' =k, I' € T}
+p{L' € N|X},I' = k,I' € T, D} # 0}

p{D} #£0|X],I' =k, I' € T}] }

S D =0x, I =k, I' e T}
k J

+Pry p{D% #0|X}, I' = k,I' € T}]
P{Xj}Hp{I' = k|I' € T}
Where we use the notation I € T to mean that the input
pixel’s value properly belongs to the target.

The sequence of deductions in equation 7 is just applica-
tions of Bayes” Theorem combined with the condition that

Il

when D? # 0, the Labeler’s output will always be B (back-
ground). Using a similar processes, we get

Dra

p{L' € T|I" € N} (8)
SN o p{rteT|Xi ' =k, I' € N}
k

p{I' = K|I' € N}]p{X}}

S D [Pvrp{D} #£0|XE I =k, I € N}
k J

p{X}}p{I' = K|I' € N}

To be able to use our error analysis, we need to estimate
distribution of the background model p{ X} and input dis-
tributions p{I* = k|I' € N} and p{I* = k|I' € T}.
These values can be approximated from experimental mea-
surements or, as we shall see in section 4, 5, the first of these
can also be estimate via equilibrium analysis and the second
and the third can be estimated via EM fitting.

4 EM algorithms

In this section, we discuss how to recover a model of the
distribution of the input. It is obvious that the distribution
that results from background maintenance is a function of
input distribution.

We assume p{I* = v} is time-independent and use the
normalized histogram of pixel intensity value as an approx-
imation to the input distribution. We can then approximate
that data with a mixture of K Gaussian models to estimate
the parameters of input distribution. Like actual tracking sys-
tems that use MOG,[13, 14], we fit the MOG to the input
using an Expectation-Maximization (EM) algorithm. Since
EM fitting is a non-linear minimization process, for some of
the input distributions the fitting may get stacked in a local
minima.

In our analysis, we use the EM algorithm to fit for in-
creasing values of K and stop when the new component has
a “weight” less than 10=5. When this occurs we leave the
item blank in table 1, which generally show the mean abso-
lute error between the normalized histogram and the MOG
fitting.

Figure 2 shows some input histograms over time and in
table 1, we list the fitting error of the output of EM algorithm
[15] when we assume different component numbers in the
mixture Gaussian distribution.

Figure 6, is the histogram of the dynamic models associ-
ated with the data shown in figure 2. The dynamic model is
a histogram plots B, — I. Table 2 shows the corresponding
output of EM algorithm. From the table 1, 2 and figure 2, 6,
one can draw some important conclusions:

Il

e Even when there are no “targets”, there is a much better
fit (less than half as much residual error) with multiple
Gaussian. For the MOG for MAE (A), the weight, mean
and variance for the 1, 2, and 3 components are 0.9175 -
N (148.07,10.3624), 0.0636 - N (156.649, 9.83587) and



0.01883 - N(128.617,954.443). Obviously the second
and third components are being added in an attempt to
handle the non-Gaussian nature of this data. Observa-
tions over a larger number of points show that adding
second and third components for a single background
generally add either a wide distribution centered at ap-
proximately the first model, or split a single peak into 2
adjacent peaks of similar magnitude.

Fitting to the dynamic model, we could see that adding
the second Gaussian component is still quite important.
In table 2, significant decrease could be seen when we
use large blending parameters, for small blending pa-
rameters, the gain is also larger than % (This was non-
intuitive and may be related to sampling artifacts).

Generally, there is a significant improvement between

the signal Gaussian and the two component mixture Gaus-
sian model. And the result is acceptable for the general

case. When we add the third and forth components into

the two component Gaussian model, the gain is still no-

ticeable but smaller. (As the number of terms grows so

does the chance that EM algorithm is stuck in a local

minimum point.)

5 Equilibrium Formula

Rather than running hundreds of experiments to develop the
needed information we explore the use of equilibrium anal-
ysis. With this analysis, we simply start from a model of
the input and use it to compute the distribution of the back-
ground model states (which depend on a, o' and the Markov
labeler model parameters). To do this we assume the model
for the labeler’s behavior is will satisfy the Markov prop-
erty. For technical reasons we must assume the labeler and
background models are homogeneous discrete-time Markov
chain that are aperiodic and irreducible. For a finite state
space (e.g. integer values for X]t-) this is satisfied and thus

we know an equilibrium model, p{ X"} always exists.

5.1 Computing p{X}"}

If we presume the input data is from a discrete stationary
distribution, the distributions of these state variables can also
be determined via equilibrium analysis, i.e. it is given by the
distribution when ¢ — oo. In order to get the equilibrium
solution, we need to calculate the one step transition matrix,
[p{XT" | X[}], of the state variables.

p{X]T X}
=Y, [p{X;+1|X;,It =k, D% =0}

p{D% = 0|X},I' = k}
+p{XH XL I = k, DY # 0)

2
p{D} # 01X}, I' = k}]p{I' = k}
Recalling equation 4, it is clear that for any given 7 and &
p{X !X}, I' = k, D% = 0} is non-zero for for exactly 1
value of ;.

©)

The item p{X}*!|X},I* = k,D% # 0}, is much more
complicated because of the labeler’s behavior.

p{X;HX], It =k, DY, # 0}

(3

= Y {p{X!* Lt XL I = K, D # 0}
Lt

p{L'|X},I' = k, D} # 0}}

where Lt could be target () or Non-target (V).
Obviously, we can also compute

p{I'=k}= > p{I'=kI'€sip{I' € s} (11)
se(NUT)

When we combine the above equations, we can finally es-
timate p{ X'*}, the probability of background modeler states.
The one step transition matrix depends on the inputs, the
value of the blending parameters and the model of the la-
beler. We note that while this will save measurements, this
process is not trivial. Computation of the equilibrium model
currently takes a few hours. Fortunately, we can compute
multiple models in parallel.

6 Input Histogram & MOG Fitting

We now look at model acquisition and verify how well the
models fits the data. As we shall see, the results show that for
these outdoor datasets with cameras in “automatic” mode,
the use of a single Gaussian distribution is questionable. On
pixels with no targets, a two term MOG model generally has
half the modeling error of a Gaussian model.

(10)
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Figure 2. Histogram Intensity Over Time. Each row repre-
sents a histogram from 100 samples.

In figure 2, each picture shows the histogram of pixel in-
tensity value of one pixel when the time is changing. Each
row in a picture is one histogram, the darker pixels repre-
senting higher values. From the figure, we notice that the
histogram is moving when the illumination is changing. For
our input model, we accumulate these individual rows to pro-
vide a cumulative histogram for fitting.

In the figure 2 and 6, picture (A) is a pixel on the road
where the target appear infrequently; picture (B) is also a
pixel on the road, but the target appears more frequently; pic-
ture (C) is a pixel of a swaying leaf; picture (D) is a pixel on
a waving short-grass area; picture (E) is a pixel on the wall
of a building near the parking lots and picture (F') comes
from shadow in the parking lots. Only figures (A4) and (B)



MAE Mixture Gaussian Model Errors ( x10~2)
One Two Three Four | Five

(A) |5.65019 | 3.78010 | 3.32295 | 3.06526

(B) |6.11431|2.59215 | 2.26253 | 2.26601 | 2.270

(C) |2.27294|0.76633 | 0.69196

(D) |2.92134|2.59533

(E) |0.78229|0.40811 | 0.40108

(F) |1.11471]0.81691 |0.78818

Table 1. Fitting errors for EM Fitting of MOG to static model

contain any targets. From the table we see that in these six
typical outdoor scenes, using more than two components in
a mixture Gaussian distribution to calculate the background
is not necessary, but using a single gaussian generally has a
15% to 200% larger error.

7 ROC curves

We have discussed the details of how to efficiently compute
the pra and pwp, let us look at how they could be used. We
convert the pra and pyp into ROC curves which can be used
to set system parameters. To produce a ROC plot, all system
parameters but one are fixed and a graph of pga VS pmp IS
plotted as the parameter of interest is varied. One may com-
bine multiple ROC plots for different values of some of the
fixed parameters. In our case, the two parameters of most
significant interests are the threshold G and the blending pa-
rameter a.

The user can then use these plots to set system parameters.
Note that in all of the plots herein, the false alarm probabili-
ties are plotted on a scale of [0, 10~3] because we are inter-
ested in very low rates of false alarms. As an alternative to
human selection based on viewing graphs, we can automat-
ically choose the parameters that meet some user specified
optimization criterion, e.g. the minimum pyp given that pea
is no greater than 1 every minute. Implementing automated
ROC analysis is trivial given the data needed for the plots.

ROC curves/analysis have been used extensively for sys-
tems analysis and parameter setting. ROC analysis gener-
ally requires considerable experimentation and ground truth
evaluation to the actual acquisition of the pga and pyp data.
The plots shown in this section usually require data from 100
“runs” for any set of input.

The proposed approach of developing models of the sys-
tem’s behavior and deriving pra and pyp in terms of simpler
measurements, greatly simplifies their use for parameter set-
ting for this low level vision task. By further splitting the
modeling into background scenarios and target models, we
further simplify the process. After annotation of a smaller
number of sequences with targets, we can collect background
models from more sequences where annotation is trivial be-
cause there are no targets. For the ROC analysis, we can an-
alytically mix different “target” distributions and test them
against different backgrounds. This also allows us to mix
in targets that would be difficult to control in real experi-
ments. For example, in figure 3 we have the similar back-

ground/target models. Both have a primary background de-
scribed at N(127.133, 5.60556). In the first case, we have
2 targets, one of which is broad and quite close to the back-
ground (V(132.859, 98.256)), with the second target distri-
bution farther away (N (72.0128,159.729)). In the second
example, we simply relabel the V(132.859, 98.256) as back-
ground. With training on many different inputs, we can have
target models for pedestrians, cars, trucks and even targets
which are trying to blend in (i.e. camouflaged targets).

aaaaaaaaaaaaaaaaaa

Figure 3. Linear plots of Static ROC curves with respect
to different blending parameters. Left is 1 backround and
2 targets (one very close to background). Right is 2 back-
ground and 1 target. Note scales are [0, 1]z[0,10%] on
the left and [0, .07]z[0210 ] on the right. See text for
discussion.

(A) (B)

Figure 4. Linear plots of Static ROC curves with respect to
different blending parameters. (A) Static ROC for the pixel
on the ground in a parking lot at CMU (figure 2(A)), (B)
Static ROC for the pixel where leaf is swaying in the woods
(figure 2(C)). Both plots have scales of [0, .5]z[0, 10~3].

When we change the plot method, figure 5, we could no-
tice that even in the same curves, different blending param-
eters and different thresholds produce different effects in the
different parts of the curves.

8 Dynamicsvsstatics
Up to this point, the error analysis has presumed that the in-
put model and systems behavior are described by a set of
stationary distributions. Of course we do expect lighting to
change, but question how fast it changes and how much it
will that impact the analysis. This section answers these
questions and shows how to extend our analysis to handle
the dynamic case.

If a distribution is stationary, then generating many sam-
ple histograms over varying sampling windows should pro-
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Figure 5. LogLog Plots of the ROC curves for the same
data shown in the left of figure 4. The log plotting make it
easier to see the separation of the curves at low ppa.

duce, statistically, the same results. Simple observation of
diagrams in section 6, for both indoor and outdoor scenes,
shows that the dynamics is often significant. (Recall each
row contains a histogram using 100 samples from the under-
lying distribution). Up to now, we have combined all that
data and computed the expected distribution over longer pe-
riods, but that can significantly reduce system sensitivity.

We note that the definition/derivation of pga and pyp did
not depend on the distribution being stationary and hence the
ROC analysis which is based on them, applies to the dynamic
case as well. Of course, the distributions on which they are
based are no longer stationary and hence both pga and pyp
are functions of time. Thus for a more meaningful analy-
sis we would want to compute a statistics (mean/variance)
on pra and mean pyp. This generalization would allow us
to combine measurements from different (but similar) pixels
and scenarios, and collect data a over much wider range of
conditions in a much shorter period of time.

The EM fitting to the data to recover MOG models still
applies, as long as we make the temporal sampling fast enough
so that each fitting is over an approximately stationary pe-
riod. Note however, shorter sampling intervals decrease the
accuracy of fitting.

The equilibrium analysis (EA), however, cannot be sim-
ply extended. The EA presumes that the background up-
date equation has reached its stable state. If the background
model is not stationary then it does not necessarily have an
equilibrium. The EA is, however, simply a means of re-
ducing our experimental/simulation effort and without it the
analysis will be more expensive. We will have to gather data,
either directly or via simulation, for various values of .

Now recall that the use of temporal blending was not in-
tended as an efficient way to approximate the mean, but rather
as a technique to allow the system to track the background
dynamics. Looking at the operation of the system, in fact, we

are not as interested in the modeling of the background B, as
we are in modeling the statistics of p{ B, — I'}. Thus we can
ask the question: “For different values of «, how stationary
is the distribution of p{B, — I}?”

In figure 6 we show the histogram plots for B, — I for
the same data show in figure 2(D). The plot shows « in the
range % to 6i4. From this we can see that even in a case were
there was significant scene dynamics, the temporal blending
produces a distribution on B, — I is approximately stationary
and hence we can proceed in the analysis using this dynamic
model.

For this dynamic model we need to measure the input dis-
tributions, for each value of « (and «'). If this input and state
distribution is stationary, then it again removes the need to
compute pea, pvp and the ROC curves over many samples.
If « is very small, the distribution will not be as stationary
as one might desire and then the collected model will be
smeared. As before, such smeared model will be stationary
but reduce sensitivity. While the distribution p{|B, — I|}
requires considerably more experimentation to acquire, the
computations for a few « values is inexpensive enough to be
done simultaneously. Of course, we have still removed the
need to measure the distributions for each value of T, but can
now combine the values from different pixels so the number
of experimental runs needed per scenario is still quite small.
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Figure 6. Dynamic model (p{B,; — I}). Each row is a
histogram from 100 samples. (A) a = 0.125, (B) a =
0.0625, () a = 0.03125, (D) o = 0.015625

MAE Mixture Gaussian Model Error ( x10~2)
One Two Three Four

(A) |15.2057 | 0.54339

(B) |15.5265 | 0.94054

(C) |15.9132|9.84516 | 8.51713

(D) |15.5553|10.1210 | 8.99075

Table 2. Fitting errors for EM Fitting of MOG to the dynamic
models shown in figure 7.

We also note that the derivations were in terms of By,
which is the background model which is closer to I. In prac-



Figure 7. Linear Plots of dynamic ROC curves with respect
to different blending parameters using the same scenes
shown in 3. Scale on left is [0, 1]z[0, 102], and on right
is [0, .04]z[221074,1073]

tice this is limiting in two ways. First, it means the update
formula used to capture the model p{B, — I} will have to
make the choice of which model is closer. This implies that
some higher-level processes that produce the labels that are
actually used in the update process will impact the measured
distribution. It is important that the decision can be made
independent of the global threshold G.

While a bit more expensive in terms of measurements the
dynamic model allows better modeling of real scenes. It has
the secondary advantage, in our experience, that the distri-
bution p{B, — I} is much tighter, and hence provides for
better sensitivity. While the distribution of p{B, — I} well
centered, there is a temporal variation in its variance. With
this observation it is not surprising that some systems use a
threshold that is also dynamic. Given the dynamic model we
can produce the ROC curves in figure 7 correspond to the
static models in figure 3.

9 Conclusion

This paper has explored error analysis for background mod-
eling and the primary change detection phase of video-based
visual surveillance systems. The error analysis approach and
basic equations can be adapted for analysis of a wide variety
of self-adaptive change detection systems. The main contri-
bution of the paper is showing how to reduce the number of
experiments needed to generate ROC curves for this problem
by their computation to combinations of simpler measure-
ments and equilibrium analysis or input data model fitting.
Using this process produces ROC curves which can be used
to set system parameters.

As part of that experimental validation and EM model fit-
ting to input data we also showed that, for the many different
types of scenes considered, a single Gaussian per pixel was
NOT a good model of the pixels value. The paper shows the
problems with assuming, a static MOG model with white
pixel “noise” and how a dynamic model can reduce these
difficulties.
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