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Abstract
Multi-resolution techniques have been used in a wide

range of vision applications. Unfortunately, the costly op-
eration of building a proper pyramid strongly reduces its
value as a tool for reducing computational cost. A new
approach, physical panoramic pyramid, is introduced in
this paper. Physical panoramic pyramid measures multi-
ple resolutions simultaneously resulting in multi-resolution
panoramic images. No computation is needed to construct
these image pyramids. We also analyze general noise sen-
sitivity in image pyramids, including the interaction of the
loss of resolution, random background noise and aliasing
noise. The paper also discusses the issue of indexing be-
tween the neighboring layer, the viewpoint variation and
the applications of the physical panoramic pyramid.

1 Introduction
There is a large body of research on multi-resolution

and scale-space image processing and computer vision
[1] [2] [4], and with the recent advances in wavelets the
amount of research has redoubled to the point of multi-
ple conferences on wavelets and applications per year, e.g.
SPIE’s [6]. Multi-resolution techniques, pyramid algo-
rithms, have been widely used in vision applications such
as segmentation, edge detection, motion estimation and
tracking. Throughout the literature, three reasons dominate
the justification for multi-resolution processing:

1. reducing computation via focus of attention and
coarse-to-fine processing,

2. unknown scale or inherently multi-scale process such
as edge detection or region segmentation,

3. its apparent relation to the human visual system.

A final advantage, the reduction of noise at the higher lev-
els of the pyramid, may contribute to the success of multi-
resolution algorithms. However, it is generally not explic-
itly stated as a motivating factor, and we are unaware of
any formal studies on its impact.
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While the pyramid algorithms have much to offer, they
have had limited use in near-real-time tasks, because build-
ing a proper pyramid is a potentially costly operation re-
quiring a prefiltering convolution before down sampling.
For instance, presuming a separable Gaussian con-
volution, we need multiplies and additions for each
of pixels at for approximately

to make the first layer of the pyramid, with
of that for each additional layer, the total cost is about

just to form the pyramid. Although this can
be done with today’s processors, it is quite taxing and
leaves few spare cycles for the actual processing. It be-
comes more significant when we consider HDTV or larger
images, for which the large data rates demand “intelli-
gent” processing. Building a good pyramid would require

for HDTV and for
video rate imagery.

To handle the computational burden, researches
have designed, built, and fielded, so-called pyramid
machines[7]. These machines use multiple processors in
parallel to produce a pyramid at video rate for
video. These pyramid machines also have the advantage of
allowing parallel processing on the data of each level which
is becoming important for algorithms such as image sta-
bilization where an affine parameter is estimated for each
patch at each level. However these specialized machines
are costly and require considerable expertise to program
and have significant Size Weight And Power(SWAP).

In [8] [9], S. Nayar revolutionized wide-field of view
imaging by introducing an omni-directional sensor - a sys-
tem that images a full hemisphere while allowing one to
generate geometrically correct perspective images from the
measured image. This paper extends the omni-directional
sensor to physical panoramic pyramid using a set of
parabolic mirrors. When using panoramic pyramid with a
conventional camera/digitizer, we only pay to transfer the
data which can be done via standard DMA, using only min-
imal CPU effort but still using system bandwidth and in-
terfering with main memory access. With a CMOS camera
or with cameras that support sub-frame mode access (e.g.
CID cameras and many of the high resolution CCD) even
the transfer of uninteresting data can be avoided. When
the frame-grabber is on the other side of a slow bus or non-



DMA supporting interface (e.g. PCMCIA or ISA), this se-
lective data access is equally important.

The paper is organized as follows. Section 2 describes
the physical panoramic pyramid. Section 3 presents the
noise sensitivity analysis in pyramids, including the inter-
action of the loss of resolution, random background noise
and aliasing. Section 4 discusses the issue of indexing and
viewpoint variation of the panoramic pyramid. Section 5
presents the applications of the panoramic pyramid and
summarizes the paper.

2 Physical Panoramic Pyramid
In a para-camera[8] [9], a parabolic mirror is imaged by

an orthographic lens to produce an omni-directional im-
age. The combination of orthographic projection and the
parabolic mirror provides a single viewpoint, at the focus
of the parabolic surface. The image of the mirror, called
the para-image, contains a hemi-spherical field-of-view,
independent of the mirror size. The physical panoramic
pyramid uses a set of parabolic mirrors stacked one on the
top of the other. Figure 1 shows a three layer panoramic
pyramid, where the mirrors were chosen so that the gen-
erated omni-directional images were the resolution of
the next finer resolution. Actually, mirrors can provide any
resolution reduction desired. e.g. 4 to 1, 10 to 1 or even
6.4 to 1 (to reduce a image to normal
video). Figure 2 shows a panoramic pyramid image, the
ratio of resolution between different image levels is 1:2:4.
The “edges” of the mirrors only distort 1 pixel. To help
understanding the scale, we note that the person is approx-
imately 1 meter from the camera, the open door is 2 meters,
the two computer monitors(lower right and left) are 3
and 3.5 meter respectively. While the example in 1 shows
a three layer panoramic pyramid with a 2:1 reduction rate
and field-of-view of degrees, we can choose to
use only 2 mirrors, with a 4:1 reduction rate, which results
in a degree FOV. The lowest resolution pyra-
mid level with both is, however, the same. This 4:1 pyra-
mid also places less demanding depth-of-field constraints
on the imaging system.

For a panoramic pyramid using an NTSC camera,
the maximum spatial resolution along the horizon is

pixels
degrees

pixels
degrees (5.1 for PAL). Note the “spa-

tial resolution” of the image is not uniform. While it may
seem counter intuitive, the spatial resolution of the omni-
directional images is greatest along the horizon, just where
objects are most distant. If we zoom in to show only a
quarter of the pyramid we reduce the FOV to 90x55 (or
90x80) but double the horizontal resolution to 8.4 pix-
els per degree. For comparison, a regular camera with

With mirrors viewing below the horizon we can extend the FOV fur-
ther to 360x80 for a 4:1 mirror.

a 90x65 degree FOV would have maximum resolution

of pixels
degrees , or about 15% less than the

panoramic pyramid. The panoramic pyramid, however, has
lower resolution in the vertical direction and its resolution
decreases higher in the view.

While one could unwarp the panoramic images to pro-
duce multi-resolution perspective images in different di-
rections, and then apply the algorithms in their “natural
space”, the unwarping would add computation and intro-
duce added errors. Similar issues arose in our surveil-
lance work, where we have shown the speed advantages
to be gained by properly adapting/developing algorithms
to work in the raw omni-directional image space[12].

In this case of the panoramic pyramid there is an offset
in the mirrors which produces a small viewpoint variation.
For the panoramic pyramid in Figure 1, the viewpoints of
the upper layers of the pyramid are offset by just under
9.8mm and 4.9mm from the layer below them. In two-
layer pyramid with a 4:1 reduction, it is even smaller. As
shown in section 4, the impact on the generated images is
insignificant and can be ignored.

Figure 1. Three layer physical panoramic pyramid
imaged from side to mirror stack

By using panoramic pyramid, algorithms are thus free to
use coarse-to-fine focusing of attention in the truest sense,
after processing the coarse level they transfer only the data
of interest for the finer levels. In this way they significantly
reduce not only the amount of the data processed but also
the amount of data transfered. When looking at larger res-
olution imagers, this can be significant. For example un-
compressed HDTV requires a transfer of per
second, more than the maximum bandwidth of the PCI bus.

Let us now consider the computational complexity of
the different pyramid algorithms listed in Table 1. To con-
struct traditional pyramid, we need multiplications, addi-
tions and loading operations. For example, building the
first layer of the pyramid using Gaussian kernel, re-



Figure 2. Multiresolution panoramic pyramid image, the ratio of resolution between different levels is 1:2:4.
The original size is 480

quires multiplications, additions and load-
ing operations, if the size of the image is . If we
use ideal low-pass filter, we need multiplications and

additions, where represents , and another
loading operations. If we use block-averaging fil-
ter instead, only additions and loading operations
are needed, but it can introduce significant aliasing arti-
facts(section 3). However, for physical panoramic pyra-
mid, there is no computation cost and only the lowest res-
olution image needs to be loaded. For example, if we use
a three-layer pyramid, the number of loading operation of
the coarsest image is . For problems where the
computation on each level of the pyramid is simple, e.g.

segmentation or tracking, these savings can be significant.
Take motion tracking for example, at each level we basi-
cally subtract a background image, which is computation-
ally trivial. With panoramic pyramid, we may directly use
the low-resolution para-image stream to detect the “blobs”
and then use the only those parts of the high-resolution
para-image needed to actually track detailed motions.

If the application requires standard perspective images,
then the images from the highest resolution of the pyramid
will have to be unwarped. This unwarping can introduce
artifacts, but as was argued above, the resolution may ac-
tually be higher than a standard camera with similar FOV,
so the warping introduced aliasing is not expected to be



Level 1 Level 2
Input Size

Output Size
Sample method

Gaussian
Gaussian
Gaussian

Ideal LP filter
average

Sample directly
Panoramic Pyramid

Table 1. The number of operations needed to ob-
tain different pyramid levels. Note for panoramic
pyramid, only the requested resolution image
needs to be loaded

significant.
Another advantage of the panoramic pyramid is it is

possible that the coarse resolution image can provide ex-
tra information that does not exist in the fine resolution
image. For traditional pyramid construction, all the multi-
resolution images are computed from the same original im-
age, the coarse resolution image is only a simplification of
the fine resolution image. However, the measurements of
multiple resolutions images by panoramic pyramid are sta-
tistically independent. Combining this measurement can,
at least in theory, reduce the camera noise.

Besides using panoramic pyramid, it is also possible to
use normal CCD cameras combined with beam splitters to
acquire multiple resolutions images, see Figure 3.

beam splitter
beam splitter

CCD camera

CCD camera

CCD camera

100mm lens

25mm lens 50mm lens

Figure 3. Use three beam splitters and CCD cam-
eras to acquire multi-resolution images

3 Noise Sensitivity Analysis
3.1 Pyramid Simulation System

The most obvious advantage of pyramid representations
is that they provide a possibility for reducing the compu-
tational cost of various image operations using coarse-to-
fine strategy. To build the pyramid representation of an
image, a smoothing process is applied followed by a sub-
sampling operation. The properties of the smoothing filters

have been extensively studied by Burt[1] and Meer[3].
This filtering-sampling operation mainly has three ef-

fects: reducing resolution (or introducing blurring), reduc-
ing background random noise and introducing aliasing. If
we also consider aliasing and non-ideal blurring as noise,
there are three types of noise in each layer of pyramid im-
ages:

1. The noise introduced by the non-ideal blurring, .

2. Aliasing noise, , which is caused by subsampling.

3. The random background noise, .

This paper studies the sensitivity of these different types of
noise for different pyramid decomposition schemes.

To do this, a simulation model is constructed, which is
illustrated in Figure 4. In this model, we have two signals
as input, one is , the noise-free signal, the other is

, where is the
random background noise which, for simplicity, is mod-
eled as additive white Gaussian. The low-pass filters we
studied are Gaussian filters, block-averaging filter,
ideal low-pass filter with band width and directly sub-
sampling. In digital cameras that provide reduced resolu-
tion in hardware, known as binning, block average down-
sampling is used.

The ideal low-pass filter shown in the model is used
to obtain non-aliasing signals. The upsampling process is
performed in the frequency domain where the missing high
frequency components are assigned as zero. In the model,

is the index of different pyramid layers. For the first level

Figure 4. Simulation model for noise sensitivity of
traditional pyramid

of the pyramid, the above three types of noise can be com-
puted separately from this simulation model as:

(1)

where: is the signal after low-pass filtering with
its bandwidth cut to ; is the signal with aliasing



but no background noise; has both aliasing and
background noise; and has neither aliasing nor
background noise.

The corresponding s are defined as:

(2)

where is the variance of the original image , and
, and are the variance of the , and

respectively. Since the blurring noise and aliasing noise
are not independent, we also consider their joint effect.
As shown in Figure 4, is obtained by upsam-
pling . It contains the joint artifact of blurring and
aliasing. We denote the joint blurring and aliasing noise as

, which can be computed as

(3)

and the corresponding is defined as:

(4)

Similarly, the overall noise at the first level is given by

(5)

where is obtained by upsampling , and
contains all the three types of noise. Thus, the overall

of the first layer of pyramid images is:

(6)

For the upper levels ( ) of the pyramid, it is dif-
ficult to completely separate the blurring and aliasing ar-
tifacts. Thus, we only consider their joint effect with the
random background noise and the overall noise. These can
be obtained by:

(7)

where and are obtained by upsampling
and through levels. The correspond-

ing s are defined as

(8)

For physical panoramic pyramid, optics provide the “re-
duce” operation and introduce little aliasing noise. We are
presuming, for now, that the proper optical design will re-
sult in a blur circle that is smaller than a pixel. The higher
curvature and larger depth of field demands make this op-
tical design more expensive than for the standard omni-
directional camera, but it is not considered too difficult.
The current system does not satisfy the single pixel blur
constraint, but before investing in development of the op-
tics we undertook this simulation evaluation to insure the
costs were warranted.

The background noise, which is modeling the random
variations in the camera electronics, however occurs after
the resolution reduction. We apply the method shown in
Figure 5 to simulate the noise sensitivity of physical pyra-
mids. An ideal low-pass filter or Gaussian low-pass filter
with are used to approximate the optical “reduce”
operator. In keeping with the process model, we add per-
pixel Gaussian noise after each blurring/subsampling op-
eration. The computation of s is kept unchanged.
Because we use ideal and Gaussian filters we can directly
compare the impact of “post-pyramid” noise with the other
artifacts.

Figure 5. Simulation model for noise sensitivity of
physical panoramic pyramid

3.2 Experiment Results
The evaluation used sixteen 8-bit gray-level

images, for of which are illustrated in Figure 6, see [13]
for the others. For the background noise model each im-
age was corrupted with additive random Gaussian noise
with the standard deviations . The aver-
age of over these 16 images is used to represent
the noise sensitivity of traditional pyramids and the physi-
cal panoramic pyramid models. Table 3.2 shows the aver-

Figure 6. Four of the 16 test images

age for the different pyramid algorithms when back-
ground Gaussian noise . Based on our measure-
ment, average standard deviation of background noise in
the camera is around . The last two rows of the table are
the s of the two physical panoramic pyramid models.

A Besel or pill-box might be a more accurate model but would make
comparison more difficult.



level 1 ( ) level 2 ( )Sample method

Gaussian filter 13.21 13.41 15.36 28.92 16.49 8.87 8.91 30.34
Gaussian filter 13.90 14.04 15.22 31.35 18.50 9.75 9.77 35.12
Gaussian filter 14.24 14.30 14.73 35.25 22.41 10.01 10.01 41.75
Gaussian filter 13.42 13.45 13.68 38.47 26.57 9.31 9.31 45.40

block filter 12.17 12.21 12.63 33.51 20.55 7.72 7.73 39.55
Ideal LP filter 15.28 15.38 15.38 34.58 — 10.88 10.89 40.58
Sample directly 12.64 12.90 15.38 27.49 15.36 8.00 8.07 27.49
Physical pyramid model I 14.93 15.38 15.38 27.49 — 10.76 10.89 27.49
Physical pyramid model G 13.20 13.45 13.68 27.50 26.57 9.23 9.31 27.49

Table 2. Average when (Average standard deviation of camera background noise in physical
panoramic pyramid is around )
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Figure 7. Compare average overall of different pyramid algorithms

One of them uses ideal low-pass filter, the other uses Gaus-
sian low-pass filter with . Figure 7 shows the
changes of average overall of different pyramid al-
gorithms when of background Gaussian noise increases
from 0.0 to 16.0.

From the results, we have the following general obser-
vations about noise effects in pyramids:

1. For the first level, where we could separate all noise
components, it is clear that blurring dominated alias-
ing for all filters other than the ideal and direct down-
sampling. From the full data-set (not shown), we also
find that non-ideal blurring is the dominant noise com-
ponent when . For level 2, for the traditional
pyramid models the blur+aliasing noise dominates un-
til .

2. When , ideal low-pass filter can provide the
best performance among the different approaches that
we studied here. This is due to the fact that blurring
effect of the ideal low-pass filter is less than other
filters and it does not introduce aliasing. But when

, the performance of Gaussian low-pass filter
with is better than that of ideal low-pass fil-
ter because of its better background noise suppression

ability.

3. The background random noise is independent of blur-
ring and aliasing. While, blurring noise and aliasing
noise are highly correlated. In some images, for exam-
ple, the is even larger than the .

We can also draw the following conclusions about the
new physical pyramid models:

1. At level 1, the performances of two physical panoramic
pyramid models are comparable to the pyramid algo-
rithms using Gaussian low-pass filters and ideal low-
pass filter, and is better than that of block-
averaging filter when of the background noise less
than . (Recall our cameras have .) When

, the performance of the physical
panoramic pyramid model using ideal low-pass filter
is still better that of block-averaging filter.

2. At Level 2, we see that for low and moderate noise
levels, physical pyramids are better than filtering,
and for low noise they are better than Gaussian pyra-
mids with small .

3. In all test cases, the new physical pyramid models are
superior to direct downsampling, which is only pyra-



mid technique close in cost.

4 Error Analysis of Physical Panoramic
Pyramid

As we mentioned before, the physical panoramic pyra-
mid can directly measure multiple resolutions, the only
computation is the user’s algorithms being applied at the
lower levels and then the indexing for the next finer level.
This indexing has two components.

The first type of indexing is the generation of perspec-
tive views from the measured data. As in the case of the
omni-directional images, this “unwarping” of the image
can be reduced to a table lookup with optional interpola-
tions such as nearest neighbor and linear interpolation [10].

The second indexing issue is relating the images at var-
ious levels of the pyramid to corresponding pixels at the
next level. In traditional pyramids this can be done via
a simple formula, for the panoramic pyramid the formu-
lae are more involved but can be pre-computed from the
sensor/mirror geometry. Furthermore, since the mirrors
are stacked one on the top of the other, there is an issue
of viewpoint variation. On the following derivations, we
show that the impact of the viewpoint variation on the gen-
erated images and the computation of indexing between
different levels are insignificant.

Initially, let us assume that the normal axes of two
neighboring mirrors and their viewpoints are coincident,
the ratio of the radius of two mirrors is , where

is the radius of the big mirror, see Figure 8. A line in

.

VViewpoint

..

(x1, y1)

(x, y)

h1 h0

Omni_image plane

P

r0

r1

d

l

Figure 8. Two-layer panoramic pyramid, where the
normal axes of two neighboring mirrors and their
viewpoints are coincident

three-dimensional space will intersect with the paraboloid
surface of the mirror at a distance from its focus :

(9)

and the projection of on the para-image plane can be
described as:

(10)

We observe:

(11)

so the relation between two projection points and
on the two para-image planes is:

(12)

from equation(12) , we obtain the initial indexing equa-
tions:

(13)

Consider now the actual physical construction where
the normal axes of two mirrors are coincident but there
is a vertical distance (the height of the big mirror)
between two viewpoints, see Figure 9. In this case,

Viewpoint

h1

h0

V1

V

.P r1

r1’

d

l

h0/2

Figure 9. Two-layer panoramic pyramid, where the
normal axes of two neighboring mirrors are still
coincident and there is a vertical distance
between two viewpoints of the mirrors

changes to :

(14)

If we assume , and
. From equation (10) and (14), we obtain that

and . The difference between
and is only , which is around 0.14 pixel in the
para-image. If , The difference between

and is and it is around 0.24 pixel in the
para-image. So is approximately equals . Thus we
can conclude the small variation of viewpoint in vertical
direction can be ignored, except at very close range.

Finally we assume that there is horizontal shift between
the two mirrors. In the para-image plane, there is transla-
tion between the centers of the projection of two mirrors:

(15)

Handling this translation is straightforward. So the general
indexing equations can be written as:

(16)



Based on the above derivations, we conclude that the in-
fluence of the mis-indexing between two neighboring lev-
els of the pyramid due to the small vertical variation of
the viewpoint can be ignored. This type of mis-indexing is
usually introduced by the height of the mirror. Meanwhile,
the mis-indexing from the small horizontal variation of the
viewpoint can be corrected by the shift of the viewpoint,
which is easy to be measured.

The parameters needed in equation (16), , , ,
and can be directly measured from the omni-image
(Figure 2) and these variables are also required to gener-
ate the perspective views from the omni-image [10].

5 Discussion
Physical panoramic pyramid, which is inexpensive

in computation, is an excellent alternative to traditional
pyramid building algorithms. Multi-resolution omni-
directional images can be obtained simultaneously using
this approach. From the noise sensitivity analysis we see
that physical panoramic pyramid are comparable to or bet-
ter than the computationally constructed pyramids from
low to moderate camera noise. We think the panoramic
pyramid is a good alternative to the traditional multi-
resolution approaches, especially for the real-time appli-
cations.

One of the ongoing research projects related to
panoramic pyramid is multilevel color histogram represen-
tation of color images by peaks[11]. Where a two-level
panoramic pyramid with a factor of 4 resolution reduction
is used to get multi-resolution omni-images. In [11], it is
shown that histogram peaks are more stable than general
histogram bins where there are variation of scales. A room
recognition system is also introduced which applies this
indexing technique to omni-directional images of rooms.

The other research topic we are going to pursue is us-
ing panoramic pyramid on mobile robots. Our efforts
are centered on algorithms for use in mobile-robot nav-
igation. Because of the limited computational power of
such systems we are starting with traditional NTSC/PAL
based panoramic pyramid and developing hybrid algo-
rithms for: location identification, flow-based obstacle
avoidance, navigation, structure from motion and mosaic-
ing/map building. At the same time we will also be test-
ing/developing our optics and processing techniques for
even larger format cameras, presuming that it will even-
tually become cost effective.

For motion tracking[12], We use low-resolution para-
image stream to detect the objects and then using high-
resolution para-image needed to actually track detailed
motions.

While we have built a panoramic pyramid prototype,
there are numerous research issues still to be addressed.
The larger vertical extent of the stacked pyramids demands

a greater depth-of-field and more aggressive handling of
field-curvature effects than is needed in standard omni-
directional systems. As we move to higher-resolution,
refined optical designs are needed to handle the smaller
photo-site size and the larger total sensor size. Finally,
even with the existing image systems the issues of flexi-
ble real-time access to the data will require considerable
effort.

References
[1] P.J. Burt, “Fast filter transforms for image process-

ing,” Computer Graphics and Image Processing, 16,
pp. 20-51, 1981.

[2] A. Rosenfield, editor, Multiresolution Image Process-
ing, Springer-Verlag, New York, 1983.

[3] P. Meer, S. Baugher, A. Rosenfield, “Optimal Image
Pyramid Generating Kernels,” IEEE Trans. Pattern
Anal. Machine Intel., Vol 9, 512-552, 1987.

[4] T. Linderberg, Scale-space theory in Computer Vi-
sion, Kluwer Academic Publishers, 1994.

[5] J.M. Jolion, A. Rosenfield, A pyramid Framework for
Early Vision, Kluwer Academic Publishers, 1994.

[6] SPIE, Multiresolution Image Processing and Analy-
sis, V, 1995. Fifth in the series.

[7] M. Hansen, P. Anandan, G. Van der Wal, K. Dana, P.
Burt, “Real-time scene stabilization and mosaic con-
struction,” Proc. of the IEEE WACV, pp. 54-62, 1994.

[8] S. K. Nayar, “Catadioptric Omnidirectional Video
Camera,” Proc. of IEEE CVPR, pp482-488, June
1997.

[9] S. K. Nayar, S. Baker, “Catadioptric Image Forma-
tion,” Proc. of DARPA Image Understanding Work-
shop, May 1997.

[10] V. N. Peri, S.K. Nayar, “Generation of Perspective
and Panoramic Video from Omnidirectional Video,”
Proc. of DAPAR Image Understanding Workshop,
May 1997.

[11] S. Sablak, T.Boult “Multilevel Color Histogram Rep-
resentation of Color Image by Peaks for Omni-
Camera,” Proc. of SIP’99, Oct. 1999.

[12] T.E.Boult, R.Michaels, X.Gao, P.Lewis,
C.Power, W.Yin, A.Erkan, “Frame-Rate Omnidirec-
tional Surveillance and Tracking of Camouflaged and
Occluded Targets”, Second IEEE International Work-
shop on Visual Surveillance, pp48-55, Fort Collins,
Colorado,

[13] W. Yin and T. Boult, “Panoramic Pyramids”, Tech-
nical Report, Lehigh University, EECS Department.
December 1998


