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Abstract

In this paper, a new framework for evaluating a variety of
computer vision systems and components is introduced. This
framework is particularly well suited for domains such as
classification or recognition systems, where blind applica-
tion of the i.i.d. assumption would reduce an evaulation’s
accuracy, such as with classification or recognition systems.
With a few exceptions, much of the previous work on vi-
sion system evaluation does not include confidence inter-
vals, since they are difficult to calculate, and those that do
are usually coupled with strict requirements. We show how
a set of previously overlooked replicate statistics tools can
be used to obtain tighter confidence intervals of evaluation
estimates while simlutaneously reducing the amount of data
and computation required to reach such sound evaluatory
conclusions. In the included application of the new method-
ology, the well-known FERET face recognition system eval-
uation is extended to incorporate standard errors and confi-
dence intervals.

1. Introduction & Motivation

Computer vision system evaluation faces problems stem-
ming from high-dimensionality, difficulty in achieving sta-
tistical soundness, and task genericity. However, it has be-
come well accepted that performance evaluation is a criti-
cal component in validating existing and new algorithms [8],
[21], [16]. The recent books [1] and [17], suggest that the in-
terest in performance evaluation methodologies has recently
increased. Unfortunately, many existing methods either lack
statistical soundness or are task specific and hence difficult
to apply to a wider variety of systems. To date, no efficient
statisticaly sound approach for evaluating general classifica-
tion or recognition systems exists.

Given a set of samples from a single class, running each
image through a classifier defines an empirical distribution
over the set of class labels. This distribution, which sum-
marizes this class’ behavior conditioned on the algorithm
and training set, is, for the purposes of evaluation, further
transformed into some error distribution, indicating some
degree of “correctness” for a given class. We cannot expect
that each class produces the same error distribution. There-
fore, given a set of samples from multiple classes, we expect
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this final, conglomerate error distribution to be composed of
many modes (humbering at most the number of classes).

This multimodality suggests that an evaluation of classi-
fication or recognition systems (which we treat similarly)
should address two important issues. First, as with most
multimodal distributions, we must apply meaningful statis-
tics. For example, instead of simply estimating the dis-
tribution’s overall mean, we instead, should try to locate
the central values of the individual modes. Second, in ac-
knowledging the multimodality, we should, during perfor-
mance evalauation, exploit any available auxiliary informa-
tion to enhance the accuracy of our evaluation. Results ei-
ther knowingly or hypothetically obtained from the same
class should be grouped together, and the integrity of these
groups should be respected throughout the entire evaluation.
One of the goals of our methodology is acknowledgment
of these groupings to increase the precision of our second-
order statistics.

As shown in this paper, increased accuracy may be
achieved through the use of stratified sampling, and the
application of a previously overlooked replicate statistical
technigue known as balanced repeated resampling or BRR.
Unlike the bootstrap and/or jackknife methods suggeted by
[9] and [6], our new methodology (also used in [5], but
not described there) may be used to fully exploit ground
truth information. Similar in terminology, but not neces-
sarily in concept, is the use of replicate statistics for classi-
fier evaluation as outlined by [20]. Duda, et. al. suggest a
cross-validation style of evaluation. Unfortunately, such a
method can require a massive amount of retraining, which
can become prohibitively expensive given a large number of
classes.

1.1 System Model

In this section, we more formally define the terminology and
system model used in this paper. A scene is defined as some
bounded space and time containing some objects or phe-
nomenon that an experimenter wishes to investigate. Within
this scene is some set of characteristics, or properties of in-
terest. These properties take on some ideal states — their
“true” values can only be estimated through measurement



or imaging by a sensor and/or some algorithmic processing.
Let a context represent a set of potential scenes coupled with
a set of constraints that an experimenter attempts to enforce
on that scene. A single experiment constrains the context
to a subcontext, a specific set of parameters and constraints
An experiment, however, may consist of many trials, during
which the scene undergoes some change. In the domain of
evaluation, a context can be viewed as putting bounds on the
genericity that will be used in the performance evaluation.

Within a context, there are both explicit and implicit
properties. We consider any property that an experimenter
exorcizes direct control over an explicit property. All other
properties are implicit. Typically, most experimenters try to
vary the factors of interest, while controlling the variation
in the other constraints, which must be accounted for. It is
only in this manner that one can draw correspondences be-
tween particular variations in input to variations in output.
Naturally, there are always a much larger number of implicit
properties than explicit ones. One hopes that the vast major-
ity of these implicit properties have negligible effect on the
outcome of the experiments. Unfortunately for all experi-
menters, this is not always the case.

As will be shown later, our new methodology is partic-
ularly well suited towards the evaluation of classifiers that
distinguish between a large number of classes. Assume
our context defines a set W consisting of L non-overlapping
classes of interest, or W1, Wo, ..., W_. Let S be a set of im-
ages where each image s € S belongs to some class W;. Let
#i(S) represent the number of images in S belonging to class
W;. Then, we call sets S; and S, equally representative iff
#i(S1) = #(Sz) forall 1 <i < L and the union of S; and Sy
is empty. Futher, we define a set S as fully representative
with respect to W iff each class corresponds to at least one
imagein S, i.e., #i(S) >0forall 1 <i < L. Finally, we call a
set uniquely representative iff there is at most one image in S
belonging to each class inW, i.e., #(S) <1forall 1 <i<L.
It follows that a set S with one image per class from class W
is both fully and uniquely representative.

A classifier can be considered an algorithm ¢ that, given
an input (image) x, returns a class label i indicating that x €
W;. With a human in the loop, a common practice is to relax
the definition, outputting a set of candidates corresponding
to the top n potential labels.

Let the set of images G represent a training set or gallery.
Let P be a set of unknowns, (also referred to as probes or test
data) that need classification. For simplicity, we assume that
G and P are fully and uniquely representative. This greatly
simplifies our discussion and allows us to substitute G for P
as the training set without concerning ourselves with addi-
tional normalization issues. (We return to the consequences
of swapping the training and test data later.) Most classi-
fiers, given a training image g € G and probe image p € P,
can compute some bounded similarity metric s¢(g, p) indi-

cating the proximity, or degree to which p belongs in the
class corresponding to g.

As mentioned previously, given an input p, a classifier
emits a single label i indicating the most likely class W; to
which the input belongs. Typically, this is simply the label
of the gallery element g that produced the highest or lowest
similarity score sy(g, pi). In the case where many candidates
are emitted, the labels may correspond to the top n similarity
scores.

Let £(x) represent the label for image x’s true class, and
i represent a gallery image of class W;. Given a probe p,
a vector of similarity scores s(g, p) can be calculated from
all images g € G. Sorting the similarity vector and find-
ing the correct class’ respective position along it determines
the probe’s rank. Specifically, a probe has a rank of n over
gallery set G if in the similarity vector, there exist exactly n
scores greater than or equal to s(gy(p), p). For normalization
among evaluations with different numbers of subjects, given
arank r and m uniquely representative probes, we define the
relative rank R as R = r/m. Note that evaluations with a
greater number of probes enjoy a lower “best” possible rel-
ative rank.

1.2 Evaluating Classifiers

This brings us to the crux of the evaluation covered in the
new methodology. Given a probe p, we obtain, at different
layers of abstraction either a set of similarity measures, or a
collection of potential labels. From these, we calculate some
statistic about this probe which we denote 8. Regarless of
the metric, given a large number of probe statistics 8, we
ultimately desire a) an unbiased estimator of the expected
value of 8 over all the classes represented in the images, b)
an unbiased estimator of the standard error, v(8) or variance
of 6, and c) the ability to state, with probabilistic confidence,
the range of values of 0 for use in hypothesis testing.
Consider the amount of potential data required for such
an estimate. Suppose our goal is to estimate the expected
value of some linear statistic defined over the population.
Given a probe set of the population, we could obtain a sin-
gle statistic, but this can provide neither standard error nor
a confidence interval. Suppose, however, that instead of a
single probe set, it is possible to obtain a set P of multiple
probes, denoted as P. More formally, P = {Py1,P,,...,Pp}
where £(pi;) = £(px; ), pi; is the jth image of probe seti, and
i, j, k assume their obvious and reasonable values. Then, it
would be possible to collect multiple estimates, one for each
probe set. Given enough probe sets, the distribution of the
statistic could be estimated or, for some statistics, the cen-
tral limit theorem could be invoked. Unfortunately, the data
requirements to get such a measurement are non-trivial —
thirty to fifty images (at minimum) per subject may be re-
quired. Let us not lose sight of the fact that obtaining just a



single estimate may itself be a difficult and time-consuming
process, particularly if complex ground-truth is required.
What we desire is a method for estimating standard error
and confidence intervals from a minimal amount of data.

As just illustrated, one of the fundamental difficulties
faced in vision system evaluation is the difficulty of ac-
quiring sufficient data — system evaluation can be an enor-
mously time consuming, tedious, and difficult process. The
goals of the next sections are to discuss statistically sound
methods that allow an experimenter to better exploit sample
information.

2. Stratified Sampling

We briefly review stratified sampling and how it may be used
to estimate a expected value, or mean of a population statis-
tic, denoted y.1 Suppose that given a population P of size
N, P is divided into L mutually exclusive subpopulations, or
strata of sizes N1, No, ..., Ni_ respectively.

After this division, or stratification, suppose that for stra-
tum h of size N, we draw np samples. If n represents
the total number of samples, then n =ng +na+--- +ng.
Specifically, letyn ;) represent the ith value drawn from stra-
tum h. If the stratum weight (of stratum h) is defined as
W = Ni/N where zhzlwh =1, then the stratified sampling
estimate of the sample mean y; is Vst = ¥ h_; Wh¥p, where ¥,
is the sample mean of stratum h, or y,, = (1/np) zi"gly(m).
Note, it can be shown that yg is an unbiased estimator of
the population mean [11]. If, for all h, np/n = Ny/N or
nn/Nnh = n/N, then yg simplifies to the traditional sample
mean y = (1/n) Yh_y N

In order for stratified sampling to be sucessful, two fun-
damental requirements must be met. First, each stratum
must be independent, but not necessarily identically dis-
tributed. Second, each stratum should be relatively homoge-
neous. That is, the variance of samples drawn from within
the same stratum should be significantly less than the vari-
ance of samples drawn from multiple strata. As noted in
[22] and [19], some of the desirable properties of strati-
fied sampling include the following. First, given internally
homogeneous strata, stratification can significantly increase
the precision of an estimated statistic. In evaluation, this
maps to obtaining more accurate performance characteriza-
tions. Second, stratification can ensure that small subpopu-
lations are included. This is particularly difficult to ensure
given simple random sampling — a large number of sam-
ples, and therefore a large amount of corresponding ground
truth, is required to ensure that unlikely classes are cap-
tured. If the collected data is known not to be particularly
representative, then the stratum weights may be adjusted ac-
cordingly, making subsequent evaluations more meaningful.
Stratum reweighting may also be used to explore hypotheti-
cal changes in various components of the population.

1The notation and definitions in this section are from [22].

The most significant disadvantage of traditional stratified
sampling is the lack of definitive methods for obtaining con-
fidence intervals. In [22], a method is provided that can
estimate the stratified sampling mean estimator’s effective
degrees of freedom, however, it requires that each of the
Y(h,i) are normal. What we require, therefore, is an alternate
method of obtaining the stratified sampling estimates.

3. BRR

In this section, we briefly discuss a specific type of balanced
repeated replication, or BRR.2 As will be shown, BRR will
eventually allow us to draw confidence intervals over our
estimated statistics, reduce the amount of required data, and
eliminate the need for more than one training.

3.1. Full Half-Sampling

We use the same notation from Section 2. Assume we are
given L strata and np = 2 units drawn from each stratum. Of-
ten ny, is refererred to as the primary sampling unit or PSU.
Then, if y(, ) represents the ith unit from stratum h, then our
data may be composed into two sets, one consisting of all
of the first samples from each stratum, y1 = {y(1,1), Y(2,1),

-+ YL,y }» and the second composed of all of the second
samples, Y2 = {Y(1,2), Y(2,2), - -+ Y(L,2) }- LetY, Vet,1, and Vs »
represent the traditional “textbook” estimators over (respec-
tively): the entire population, y1, and y,. Then, if each stra-
tum is given equal weight, then from Section 2, we know that
an estimate of the population mean is Yt = (Vst.1 + Vst 2/2)-
Unfortunately, this estimate has only one degree of freedom,
and as as a consequence, lacks stability. Therefore, instead
of traditional stratified sampling, suppose we were to gener-
ate a synthetic half-sample, or replicate by selecting a value
from either y1 or y, for each stratum. For instance, one
such half-sample could be {y(1,2), Y2,1), Y3.1) ---» Y(L,2)}-
Having L strata and a PSU of 2 implies that there exists
2% such half-samples. Given half-sample o, one could esti-
mate some linear statistic, which we denote by y; 4. Letting:
Oh,1,0) = Lify(n 1) € (0 otherwise) and & 2,4y = 1 —Oh,1,a)
then yg; o, the half-sample o mean

L
Vsta = » Wh(dh1,a)Y(h1) +Sh2,0)Y(h2) 1)
=1

where W, represents an (optional) stratum weight (usually
one). It follows that the sample mean over the entire popu-

lation is therefore, y; L) = Elt Egilysw. Through simple
algebraic manipulation [11], it may be shown that

L
Vstoty = thWh(Y(h,l) +Yh2) 272 =3¢ ()

2BRR is not a new technique. The material presented in this section is
adapted from [11], [22], [15], and [19]



indicating Yst2b) is an unbiased estimator of the population
mean. We now move on to the second-order estimate. Let

0h = Y(n,1) —Y(n,2) and

5@ _ 1 if y(n,1) € half-sample o 3)
o 1 ifynp) € half-sample a,

or, equivalently, 5 = 28(n1,a) — 1. Then,

L
Ysta — Vst = V(yst) z WhEE]a)dh/Z (4)
h=1

and the variance estimate v(Vs;)=(Vst o — Yst)> €quals

L L
> WidZ/4+ Zy B S W Wiy drnclyy /2 ()

h=1 h<

where the second summation is over all pairs of (h,h’) such
that h < h’ < L. Unfortunately, even for moderate values
of L, Equation 5 requires a large number of computations.
Generating half-samples for an evaluation involving hun-
dreds of stratum, therefore, becomes intractable. One po-
tential speedup is to use some random, k-element subset of
the 2" half-samples. The corresponding variance estimator
becomes

k
Vi(Vst) = K(h—1) z Ysta — Yst)? (6)

Unfortunately, using simply random subsets yields a biased
estimator. The goal, therefore, is to select a subset such that

Vi (Yst) = V(Tst)-

3.2. Balanced Half-Sampling

This brings us (finally) to the concept of balanced half-
sampling or more generally, balanced repeated replication
(often abbreviated BRR). In balanced half-sampling, we se-
lect a set of k replicates, such that k < 2& (typically, k < 2%),
and v(y) (st) is unbiased. This can be accomplished if, for
allh <h <L[15],

k
2165,“)65;’) —0. (7)
o=

If this criterion is met, then the half-samples are considered
to be balanced, since all cross-stratum terms will cancel.
Thus, Vi) (Fst) = V(Vst)-

Since, for each of the k replicates we must choose a sam-
ple from each of the h stratum, a natural representation for
this set is a k x h array, which we denote B. Note that this
array does not appear directly in Equation (6); it is used only
to build the collection of half samples. If B(q ) is +1, then
element y, 1) should be included in replicate a. Otherwise,
—1lindicates element yp ) should be in the ath half-sample.

For example, if we abbreviate +1 and —1 with + and — re-
spectively, then the following 8 x 7 orthogonal array could
be used for 8 replicates based on 7 stratum.

++—+-—-
+-+-——+
-+ - - — 4+

—|+-—-—++-

B=|ZZZ3 32X (8)
— ot o+

+—+ -

I S
Using balanced replicates does not imply, however, that
Vst = ng = %Eﬁzlysw or in other words, that the mean

of the half-samples ygf) equals Y. In order to have this de-
sirable property, foreach1 <h <L,

K
> Ban =0 ©)
a=1

must be true. This makes sense intuitively, since this equa-
tion simply states that each sample must be selected an equal
number of times. Half-samples satisfying both Equation (7)
and Equation (9) are said to be in full balance [11]. Note
that this orthogonal array could be used for any number of
stratum L* < L since every pair of rows are orthogonal.

What is the proper value for k? Obviously, we desire a k
large enough to provide a reasonable estimate, small enough
to be tractable, and sufficient for balancing. Both Wolter
[11] and Gurney & Jewett [13] suggest a construction orig-
inally from [18]: use pP replicates where [ satisfies the in-
equality L < (2 —1). For example, given L = 483, then 512
replicates (B = 9) suffice (Certainly, 512 < 2483))

To the best of the authors’ knowledge, [14] is the earli-
est work to discuss, in detail, the use of BRR for the ap-
plication of confidence intervals. Frankel states that “the
distribution of the ratio of the first-order sample estimate
minus its expected value, to its estimated standard error is
reasonably approximated by Student’s-t within symmetric
intervals.” In other words, the normalized distribution of
the statistics of the BRR estimates can be approximated by
the Student-t distribution when using two-sided confidence
intervals. Frankel shows, empirically, that by using L (the
number of strata) degrees of freedom, d, makes this assump-
tion quite reasonable. Another important empirical study by
Kish and Frankel [12], to paraphrase [7], “found the t ap-
proximation to be adequate for confidence intervals for a va-
riety of population parameters with as few as 6 or 12 strata.”

In 1981, Krewski and Rao [7] provided an analytic proof
that the normalized distribution of the first-order BRR es-
timates approaches a normal distribution as the number of
strata goes to infinity. A later paper by Rust and Rao [10]
suggest that the true value of d is “somewhat smaller” than
the number of strata. However, in practice, given a large
enough number of stratum, even a large difference between
the true and estimated values of d does not significantly al-
ter the confidence interval. This last property is why the



methodology is well suited towards evaluation of systems
with a large number of classes.

So far, we have concentrated on the limiting case of two
samples per stratum. As shown in [13] and [11], the BRR
paradigm can be extended to any case where the PSU is
prime. We do not present this case here, since there is lim-
ited space and it does not provide any additional intuition for
the reader. Statistically, using a larger number of PSU can
have a significant advantage (as demonstrated later). Usu-
ally, the leading 1/(np — 1) term in Equation (6) helps yield
smaller variance, and therefore, tighter confidence intervals.
The degree to which this occurs, is of course, a function of
the underlying distributions and samples.

For both the PSU = 2 and PSU > 2 case, an orthogo-
nal array is required for the selection of a set of balanced
half-samples. Although orthogonal arrays can be tedious to
generate by hand, there are two viable alternatives. First,
there exists a number of Internet resources with free galleries
of orthogonal arrays. Even if a desirable orthogonal array
is missing from a gallery, a mathematical software package
that supports Galois Fields may be used. Maple source code
that may be used to generate an arbitrary lage orthogonal ar-
ray is provided in [4], a more comprehensive version of this

paper.

4. Other Techniques

Given the multitude of existing replicate statistics tech-
niques, we focused on BRR because, to the best of the au-
thors” knowledge, it is the best known, most studied, and
most often used replicate statistical technique specifically in-
tended for handling stratified data. (Its use in the U.S. Cen-
sus is a particularly favorable advertisement for BRR.) How-
ever, there are a variety of other techniques that could have
been used to obtain the stratified sampling mean and vari-
ance estimates. For example, collapsed stratified sampling
may be used when there is only one sample per stratum, but,
unsurprisingly shows a significant bias [11]. Jackknife re-
peated replication (remove one stratum), or JRR, is inferior
to BRR when it comes to non-smooth statistics [10]. It is
particularly difficult to apply the bootstrap variant on BRR,
bootstrap repeated replication, for a few reasons — its vari-
ance estimator is not equivalent to the true variance, it is
non-trivial to determine the proper number of replicates, and
it is difficult to determine the degrees of freedom [10].

5. Face Evaluation

In this section, we show how the new methodology may
be used to enhance the well-known FERET evaluation ([3],
[2]) so that it includes standard error and confidence in-
tervals over these errors. Our evaluation was concerned
with three different algorithms. We selected two algorithms
from Visionics’ Facelt SDK, which we will call FI1 and

F12.3 The third algorithm, which we will denote PCA, is
the PCA (principal component analysis) implementation in-
cluded with the most recent release of the FERET database.
Except for selecting different training and test data, no mod-
ification was made to the algorithm, although full source
code was available. From the Visionics Facelt package we
selected two of the SDK’s faster comparison operators (the
SDK provides several similarity measures). The authors did
not request help from Visionics in selecting the “best” simi-
larity measure, nor was it provided.

Clearly, a facial image recognition system is a type of
classifier. Given an image of an unknown subject, the sys-
tem emits one or more labels corresponding to what the sys-
tem deems the most likely identity of the unknown subject.
Therefore, the style of evaluation as discussed in Section 1.2
may be directly applied.

We assume that given a face system, there exists some
gallery G, an image set of known subjects (representative
of our class set of true identities W) upon which the system
has been trained. In addition, there exists some probe set P
of subjects to be recognized. For simplification, we assume
that P and G are selected such that P and G are equally, fully,
and uniquely representative.

The context of the evaluation consisted of a subset of the
full FERET database [2]. All subjects selected were front
facing, imaged in front of either monochromatic or simple
backgrounds, and diffusely illuminated. Stratifying the pop-
ulation according to class (the subjects themselves) yields a
different number of strata for different PSUs — there were
481 subjects that had three or more frontal-facing images
available, and 256 subjects with four or more. We denote
these sets of subjects as L3 and L4 respectively.

For precision, we use the following, more formal,

notation.  Let np represent the PSU and let qi(”“) =
{9¢,1)59(i,2)> - - - »9(i,ny) } denote the set of p images of subject

i. Let QE”“) = {q(l,j)....,q(th’j)} represent the set of all of
the jth images. In other words, imagine an array of images,
where each row consists of ny, images of each subject. Then
Qj simply corresponds to the jth column of this array and
could be used as either a gallery or a probe set (this follows
from our earlier requirement that P and G would be equally,
fully, and uniquely representative). A particular experiment
E can be wrriten as a function of G (gallery), P (probes),
and s (similarity function): E(G,P,s) = Upepranks(G,P).
Each subevaluation yields a set of ranks, one per probe. We
can obtain p samples per stratum by fixing G and selecting
different probe sets.

To compress this set of ranks into a single, meaningful
measure, consider the cumulative match score or CMS as
defined in [3]. The CMS is a function of an independent
variable r (for rank) and a rank set E — CMS(E,r) is the

3We refrain from using their SDK names out of respect for our NDA.
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Figure 1: Traditional FERET CMS curve. Each agorithmisin a
different color: FI1, FI2, and PCA.

fraction of E that has a rank of r or lower. Another view of
the CMS is it indicates the fraction of the probes yielded a
correct match within the top r candidates. For example, if
set E has 256 ranks, 235 of which have a rank of either three
or lower, then the value of CMS(E,3) would be 235/256 or
0.918.

If we fix E and vary r, the entire set of ranks can be sum-
marized with a single curve. For example, Figure 1 shows
the CMS curve for the algorithms FI11, FI12, and PCA given

a particular gallery Q(13) and probe set Qf). There are two
fundamental difficulties with interpreting this graph. The
first, which can be addressed with our methodology, is that
without any sort of standard error it is impossible to deter-
mine whether or not one algorithm may have performed sig-
nificantly better (in the statistical sense). Second, a minor
issue, the linear scale compresses the part of the graph we
are most interested in — the CMS for the lower ranks. As
a metric, the CMS meets our requirement of accurately re-
flecting information across all of the modes of our conglom-
erate error distribution. Consider the interaction between the
CMS and the multimodal error distribution as we increase
the rank. Each point on a CMS curve provides an estimate
of how many of the samples were classified correctly as the
definition of “correct” changes with the rank. The CMS will
have a jump in value as the mode of a class’ error distri-
bution transitions between being incorrect to being correct.
If the modes are both broad and numerous, then multiple
classes will transition at each increase in rank, and the re-
sulting steps may not be noticeable in the CMS curve. Our
first investigation was to determining if changing the train-
ing set would have a statistically significant effect on the re-
sults. Our initial labeling (i.e., which image of a subject was
considered the first, which the second, etc.) was derived di-
rectly from the FERET database, and may have caused some
degree of homogeneity across the nth image available for a
given subject. We performed a series of three evaluations,
each using one Q3 as the probe set and the remaining two
for the PSUs. The results of this experiment are shown in
Figure 2. In this graph, we plot the +/— two standard devi-

CMS vs. Rank / FI1 (2 PSU, 481 stratum)
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Figure 2: Thegallery effect. The algorithm shown hereisFI 1, but
with different galleries.
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Figure 3: Comparison of standard error between BRR, jackknife,
and bootstrap estimators.

ation boundaries of the BRR estimate for each of the three
different gallery sets. The algorithm used was FI1. Like
all of the graphs presented in this section, the application of
the new methodology required only a single initial training
for each set of three curves, not for each point on the curve.
So that the graphs may be directly related to confidence in-
tervals, the thin lines correspond to plus or minus two stan-
dard deviations. As clearly shown in the graph, the image
set corresponding to the top most curve had a (statistically)
significantly improved recognition rate. We call this differ-
ence the gallery effect. Inferences over evaluations having
a dramatic gallery effect, must be made carefully. While
conclusions about the population as a whole may be suspi-
cious, the gallery effect may indicate that a particular style
of image is favorable for training. For example, in our eval-
uation, the majority of images of the “best” gallery were of
subjects with neutral expressions. Further experimentation
may further insight into conditions that are particularly ad-
vantageous for face recognition.

In practice, we cannot guarantee that a subject will take
on a particular expression. Therefore, to compensate for
the gallery effect, we systematically shuffled the images’ la-
bels, transforming each Q(® into a set containing an equal
fraction of images from each of the original sets. The eval-
uation was run again, and the results can be seen in Fig-
ure 4. As indicated by this graph, mixing the galleries in
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Figure 7: Mean CMS and error for algorithms FI 1, FI 2, and PCA
with 3 PSU and 256 mixed strata.

this manner brought the graphs close enough together, that
there was no statistically significant difference between the
three curves, strengthening any inference one may decide to
make over the context as a whole. For the three PSU case
(not shown), mixing brings the curves even closer together.
In Section 3.2, it was mentioned that increasing the PSU can
reduce the variance in the first-order estimate, and therefore,
tighten confidence intervals. In Figure 5, we plot just the
variance of the CMS as a function of the rank and PSU with
identical strata. The single three PSU case yielded the low-
est variance (except for a few anomalies towards the higher
ranks). The two PSU cases were each generated by leav-
ing out a single “column” of samples at a time — i.e. only
2/3 of the original data went into the two PSU estimates.
As illustrated, the two PSU cases yielded higher variances,
especially in the most important low ranks. Figure 3 illus-
trates the accuracy advantages of using BRR as opposed to
traditional jackknife and bootstrapping. For this particular

case (algorithm FI2, 256 stratum, three PSU, gallery Q(23))
the difference among the BRR, bootstrap, and jackknife es-
timates is particularly dramatic. For the important zero to
0.1 ranks, the BRR provided approximately a 20% decrease
in variance. This is also a significant improvement consider-
ing that BRR used only 256 replicates, while 768 replicates
were used for the jackknife estimate (three PSU x 256 stra-
tum) and 1,000 replicates were selected for the bootstrap
estimator. In applications where replicate techniques may
be needed for each pixel of an image, using BRR may mean
tremendous savings. It is important to reiterate that only
rarely will stratification yield less accurate statistics [22].
Naturally, the degree of improvement will vary according to
the underlying distribution, its parameters, and the estimated
statistic.

Figures 6 and 7 are algorithm comparison graphs with
errors with one set of three curves per Igorithm. Figure 6
was generated with 481 mixed straum with two PSU. Fig-
ure 7 was generated with 256 mixed stratum with three PSU.
There was some, but not complete, overlap between the data
used for different graphs. As shown in the graphs, the PCA
algorithm improved so much that it achieved (statistically)
similar performance to FI1. Unlike the Facelt algorithms,
the training phase of PCA incorporates information over all
subjects by building a low-dimensional subspace that effi-
ciently describes the training data. This improvement may
have been due to the fact that a smaller number of subjects
were used in this case — 256 instead of 481. Nevertheless,
in all four of the graphs, however, we can see that the FI2,
for a large portion of all graphs, has a (statistically) signifi-
cant improvement in recognition rate.

6. Future Work & Conclusions

Like much other work in vision system evaluation, this re-
search has concentrated specifically on algorithm compari-



son. However, the original motivation of the new method-
ology was for comparing vision systems that used different
sensors. The fundamental difficulty of sensor evaluation is
that one cannot insure identical input. That is, given a scene
that we wish to image, during a sensor change, there will
almost always exist some scene change, regardless of the
control the experimenter holds over the environment. There-
fore, since non-identical input cannot be guaranteed, single,
simple statistics cannot properly reflect the relative merits of
the compared sensors; error measures are required to draw
evaluatory conclusions with confidence. Potentially, there
could be no statistically significant difference between the
results yielded by two different sensors within some context,
although this may be indicative of a need to add additional
constraints to the context. This conclusion would be diffi-
cult to make without any standard error measures. Using
the same stratification process provides consistency in such
potentially disparate evaluations.

In this paper, we presented a new evaluation methodol-
ogy for the class of vision systems that can be reasonably
modeled by a stratified sampling process. We showed how
balanced repeated replication can be used to exploit the strat-
ified nature of such evaluations, while simultaneously reduc-
ing the amount of required data and computation as com-
pared to bootstrap, jackknife, or cross-validation techniques.
We showed how the new methodology could be used to aug-
ment the existing FERET [3] evaluation with standard errors
and confidence intervals.
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