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Abstract

Chromatic aberration is due to refraction affecting each
color channel differently. This paper addresses the use
of image warping to reduce the impact of these aberra-
tions in vision applications. The warp is determined us-
ing edge displacements which are fit with cubic splines.
A new image reconstruction algorithm is used for non-
linear resampling. The main contribution of this work is
to analyze the quality of the warping approach by com-
paring it with active lens control. Two different imaging
systems are tested.

1 Introduction

In an imaging system, refraction causes each color chan-
nel to focus differently. This phenomenon is called chro-
matic aberration. Chromatic aberration (hereafter CA)
is generally broken up into two categories: axial chro-
matic aberrations (ACA) and lateral chromatic aber-
rations (LCA), e.g. see [7]. ACA manifests itself as
blurring; LCA as geometric distortions. Often these
sources of degradation cause measurable differences in
color images, e.g., a simple CCTV lens may have an
LCA causing & 1 pixel shifts between blue and red im-
ages. While this may seem to be a minor geometric
disturbance, its effect on the measured RGB triples can
be very large.

There are, at least, three things to do to combat CA.
First, the traditional (and probably most effective) ap-
proach is to buy good optics.* For a review of CA and
related issues in lens design see [7], [5]. For a price,
a lens can be designed to meet the most demanding
imaging criterion. However, most vision researchers use
inexpensive off-the-shelf lenses with, at best, simple CA
correction. In addition, the correction of aberrations
generally becomes more difficult/expensive as one re-
duces the focal ratio, increases the field of view, or al-
lows zooming.

A more recent development is the use of active lens
control to reduce CA. This technique, developed by R.
Willson and S. Shafer at CMU [8]-]9], takes three sepa-

rate images with slightly different focus and zoom set-

*Unfortunately, [9] reports having found significant CA in
many lenses, including SLR camera lens and ENG/EFP video
lenses that were supposed to be corrected for CA.

tings designed to compensate for the optics. The active
optics approach (hereafter AOA) has three main steps:
1) determination of best focus for each color channel,
2) determination of a magnification factor for red and
green, 3) and determination of camera shift to align
images. The first step uses adaptive focus, as in [4],
thereby correcting for most of the ACA. The second
step determines a magnification factor for each channel
and uses this to actively control the zoom lens. The final
step, to correct for differences in the optic axes, is done
by physically shifting the camera. Unlike the focusing
of step 1, steps 2 and 3 require some type of geometric
calibration image. In [9], subpixel detection of vertical
and horizontal edges is used to determine the zoom and
displacements required. Note that the AOA allows one
to reduce CA, even for chromatically corrected lenses.
The major difficulties are that the RGB color channels
must each be imaged separately (limiting it use with
moving scenes), and the cost of the active system which
requires digitally controlled focus and zoom, as well as
precision positioners (shifts are ~ .005in).

A third choice is to reduce the CA effects using image
warping. We are not the first researchers to suggest us-
ing image warping for image registration or correction.
For instance, NASA has used image warping in vari-
ous applications [3], and much of the early work on im-
age reconstruction centered around “digital correction”
[6]. Often, remote sensing work “corrects” each spectral
channel separately, thus providing some amount of LCA
correction. We are unaware, however, of any quantita-
tive study of the effectiveness of warping to correct for
chromatic aberration.

2 Correction via Image Warping
There are two main parts to correcting CA using im-
age warping: determining what warp to apply, and the
actual implementation of that warp [2]. To facilitate
comparison, we use the data from the work in [9], in-
cluding original images, AO corrected images, and the
location of horizontal and vertical edges in each of the
R, G, and B images (with the blue image focused).
First, the geometric distortions must be computed.
Using the edges (from [9]) in the blue image as the de-
sired location, we compute displacements for the edges
in the red and green images and then fit a cubic spline
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Figure 1: 2D histograms showing blue (vertical) versus red (horizontal) dispersion in color space for test case 1.
The top row shows (left to right), the uncorrected images, the results of active optics, and the results of image
warping with QRR L. The bottom shows image warping results using QRG CC-1, bi-linear and cubic-convolution
with A=-1, respectively. Overall the active optics approach is better (tighter cluster) and also more symmetric
in its error. The sigmoid shape which is slightly visible is caused by a different amount of blurring in each color

channel. Note black = 1000, and some bins are clipped.

through these displacements (separately for x and y).
The warp is then the tensor product of these splines.
Other features could be used, e.g., [3] used correlation
between features in each color channel, as well as a pri-
ort calibration information.

Image warping is commonly used in graphics, where
subjective qualitative assessment is sufficient. To use
image warping in vision we need more quantitative as-
sessments. For complex warps we previously described
a technique to increase the accuracy of the warp while
maintaining low cost, see [10]. Fortunately, the warps
for CA correction are not severe and a simple 2-pass
separable technique can be used, reducing warping to
a problem in 1D reconstruction and non-linear resam-
pling. We use imaging-consistent reconstruction filters
[1], which employ a model of PSF (blur) within a pizel
to define a functional restoration. This functional form
is then warped, and reblurred according to an output
PSF, using an approach called the integrating resam-

pler [11]. The following acronyms are used to refer to
reconstruction techniques defined in [1]: QRR L for
quadratic restoration with a box (rect) PSF and lin-
ear approximation for edge points, and QRG CC-1 of
quadratic restoration with Gaussian-like PSF and cubic-
convolution with parameter -1 for the approximation of
edge points. Previous researchers considered other tech-
niques, e.g. [3], used bi-linear interpolation with point
sampling, [6] considers pure cubic convolution.

3 Experimental comparison

Some of the data that CMU used to evaluate their AOA
(see [9] for more details) is used here to allow direct
comparison. Test case 1 used a General Imaging cam-
era with a Cosmicar motorized zoom lens (12.5-75mm).
Test case 2 used a Photometrics camera with a Fujinon
motorized zoom lens. A 1/2” BW checkerboard was
imaged at a distance of & 1.5m. Separate R,G and B
images were taken using Wratten filters. In [9] qual-
ity was measured using edge displacement. Since we
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Figure 2: 2D histograms showing dispersion in color space for test case 2. The top row shows results on the red
channel (left to right), the uncorrected red channel, the results of active optics, and the results of image warping
with QRR L. The bottom row shows the green channel (left to right), uncorrected, the results of active optics, and
the results of image warping with QRR L. For this “chromatically corrected” lens we plot black=100. We note
that the chromatic spread is still significant. The maximum error in the red channel actually gets worse with the

AO approach.

directly manipulate geometry, we felt color-based error
measures should be used.

Obviously, all pixels should lie on a line in RGB
space. To visualize the errors we use two techniques:
direct display, and quantitative error measures. Direct
display uses 2D histograms, see figures 1- 2, where the
(x,y) location of a bin is determined by the (r,b) (or
(g,b)) pixel values. The plots shown have 64x48 bins
with intensity encoding the log of the number of points
per bin, with some bins clipped. The important infor-
mation in these plots is the spread of the points around
their “central” linear tendency, the wider the spread,
the greater the CA.

The first quantitative measure, Gray-line error, is the
mean squared distance between the RGB triples and the
line defined by least squares fitting with distance mea-
sured normal to the line. This error measure relates to
the color shift of a pixel. The remaining measures are
more sensitive to blur within the image. Using a local

calibration technique, [2], we determine local black and
white reference values (BW values) used to define three
error measures. Define BW-RGB error as the mean
pointwise distance from each RGB triple to the nearer
of the BW values. Finally, define BW-R error (BW-G
error) as the mean distance between the r (g) value of a
pixel and the closer of the BW-value’s red (green) com-
ponents. Obviously, smaller error measures are better,
but because of lighting variations, camera noise, blur-
ring and errors in calibration, zero measures should not
be expected.

The histograms and error measures are presented in
in figures 1-2 and table 1. See the figure/table cap-
tions for more discussion. (Note the tables in [2] are
incorrect).

4 Conclusions and future work

This paper demonstrates the use of image warping for
the correction of chromatic aberration. The technique
was applied to images from two different cameras /



Algorithm Test case Window Gray-line BW-RGB BW-R BW-G
error error error error
Uncorrected CCTV [15 465][15 497] 1.96 19.16 12.33 9.54
Active Optics CCTV 15 465] [15 497 1.80 17.37 10.56 9.18
Image Warping QRR L CCTV 15 465] [15 497 1.33 18.87 12.38 9.55
IW QRG CC-1 CCTV 15 465] [15 497 1.37 18.89 12.38 9.58
IW Bi-linear Interp. CCTV 15 465] [15 497 2.80 19.12 12.57 9.70
IW Cubic Conv. A=0 CCTV 15 465] [15 497 7.47 18.98 12.31 9.46
IW Cubic Conv. A=-1 CCTV 15 465] [15 497 6.36 19.64 12.85 10.00
Uncorrected Fujinon 15 322] [15 322 5.77 14.41 7.96 7.50
Active Optics Fujinon 15 322] [15 322 4.12 14.30 7.92 7.70
IW (QRR L) Fujinon 15 322] [15 322 4.66 14.66 8.05 8.17

Table 1: Table of quantitative error measures. Depending on the measure of quality emphasized and the lens
tested, either the Image Warping or the Active Optics will appear better. For the Fujinon lens, AO was better
in all quantitative categories even though its maximum error in the red channel is greater (see figure 2). For the
CCTYV lens, when blur is considered, AO is the better choice. When RMS error to the Gray-line is considered image
warping was superior. Bi-linear interpolation performs measurably worse in all cases. Finally, cubic convolution
seems worse than the uncorrected image, although the qualitative results looked better. We are still investigating
this behavior of CC. We note that the least-squares line fitting can be hard to predict from the qualitative histogram
because of clipping in the histogram bins, and because it is fitting in RGB space, not the 2D space of the plots.

lenses. In general, the active optics approach [9], is su-
perior to image warping because it can correct for blur
defects. However, in the CCTYV test case, the new im-
age warping techniques reduced the mean squared error
to the gray line more than the active optics approach.
For the test other case, image warping had a larger
MS error, but did have a noticeably larger reduction
in the maximum error. Image warping would be even
better with the images focused on yellow rather than
blue. The proposed warping methods used new image
reconstruction/restoration methods [1]. Image warping
with either linear or cubic convolution filters had con-
siderably larger errors. Future work will address build-
ing a calibration model for image warping for different
zoom /focus settings.
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