
Frame-Rate Omnidirectional Surveillance & Tracking of
Camouflaged and Occluded Targets

T.E. Boult R. Micheals, X. Gao, P. Lewis, C.Power, W. Yin and A. Erkan
VAST Lab, EECS Department Lehigh University

tboult@eecs.lehigh.edu

Abstract

Video surveillance is watching an area for significant events.
Perimeter security generally requires watching areas that af-
ford trespassers reasonable cover and concealment. By defi-
nition, such “interesting” areas have limited visibility. Fur-
thermore, targets of interest generally attempt to conceal them-
selves within the cover, sometimes adding camouflage to fur-
ther reduce their visibility. Such targets are only visible “while
in motion”. The combined result of limited visibility distance
and target visibility severely reduces the usefulness of any
panning-based approach. As a result, these situations call
for a wide field of view, and are a natural application for
omni-directional VSAM (video surveillance and monitoring).

This paper describes an omni-directional tracking system.
After motivating its use, we discuss some domain application
constraints and background on the paracamera. We then
go through the basic components of the frame-rate Lehigh
Omni-directional Tracking System (LOTS) and describe some
of its unique features. In particular the system’s combined
performance depend on novel adaptive multi-background mod-
eling, a novel quasi-connected-components technique that
combines thresholding with hysteresis and region merging
and cleaning. These key components are described in de-
tail. We end with a summary of an external evaluation of the
system.

1 Background
There has been considerable work on tracking systems, for
example, see [11], [3], [5], [6], [1], [4], [9]. Our system
draws ideas from these and other earlier work. While many
of the basic ideas are similar, the details are often quite dif-
ferent, and are what account for the systems unique abilities.

Some of the major differences stem from our area of ap-
plication. Our goal is to track targets in a perimeter security
type setting, i.e. outdoor operation in area of moderate to
high cover. We seek real-time algorithms suitable for COTS
(Common-Off-The-Sheff) type of computing, and use x86
based processors. This domain of application significantly
restricts the techniques that can be applied. Some of the con-

This work supported in part by DARPA Image Understanding’s VSAM
program.

straints, and their implications for our systems include:

The lighting is naturally varying. We must handle sun-
light filtered through trees and intermittent cloud cover.
(We are not considering IR cameras, yet).

Targets use camouflage, thus it is unlikely that color will
add much information. Figure 3 shows an example scene
with a sniper in the grass.

Targets will be moving in areas with large amounts of
occlusion; finding/classifying outlines will be difficult.

Trees/brush/clouds all move. The system must have al-
gorithms to help distinguish these “insignificant” motions
from target motions.

Many targets will move slowly (less than [1/ 60] pixel
per frame); some will move even more slowly. Some will
try very hard to blend into the motion of the trees/brush.
Therefore frame-to-frame differencing is of limited value.
Temporal adaption schemes must not add slow targets to
the background.

Targets will not, in general, be “upright” or isolated. Thus
we have not added “labeling” of targets based on simple
shape/scale/orientation models.

Targets need to be detected quickly and when they are
still very small and distant, e.g. about 10-20 pixels on
target.

Correlation, template matching, and related techniques
cannot be effectively used because of large amounts of
occlusion and because in a paraimage, image translation
is a very poor model; objects translating in the world un-
dergo rotation and non-linear scaling.

Note that, except for the last, these are all generic prob-
lem constraints and are not dependent on the geometry of
the paraimage. If a system can track under these constraints
it can be used in many situations, not just omni-directional
tracking in outdoor settings.

We also note that, the detection phase is crucial; if targets
are not detected they will not be tracked. Detection is also
an area where the domain constraints make this more diffi-
cult than the situtations considered in most past papers. As a
result, much of this paper (and the systems effort) is concen-
trated on the detection phase. Because of the camouflage and

1



Figure 1. Tracking system with a single perspective “tar-

get” window. (Left-right reversal because of mirror.)

occlusion, target identification is not attempted and tracking
is limited to matching consistent spatial/temportal motions.

2 Paraimages
While other techniques might generate video in all direc-
tions, we consider the single-viewpoint constraint to be im-
portant. The Paracamera1 captures omni-directional video
that has a single viewpoint. This allows us to generate geo-
metrically correct perspective images in any viewing direc-
tion. Figure 1 shows an example of a raw paraimage and the
generated perspective view.

Note that the “spatial resolution” of the paraimage is not
uniform. While it may seem counter intuitive, the spatial res-
olution of the paraimages is greatest along the horizon, just
where objects are most distant. While the process scales to
any size imager, the current systems use 640x480 NTSC (or
756x568 PAL) cameras. If we image the whole hemisphere,

the spatial resolution along the horizon is pixels
degrees

pixels
degrees (5.1 PAL) which is 14.3 arc-minutes per pixel

(11.8 PAL). If we zoom in on the mirror, cutting off a small
part of it, to increase the captured mirror diameter to 640 pix-
els (756 PAL), we can achieve 10.7 arc-minutes per pixel, i.e.
5.5 pixel per degree (6.6 PAL).

As a point of comparison, let us consider a traditional
“wide-angle” perspective camera. Allowing for a small over-
lap to continually track objects, it would take 3 cameras with
about a horizontal field-of-view (FOV) to watch the

horizon. Note that each of these would have pixels
degrees

1Cyclovision, Inc has an exclusive license on this patented design, see
www.cyclovision.com.

pixels
degrees, i.e. about the same as the Paracamera. This

3 to 1 ratio is maintained irrespective of camera resolution.
Clearly, the traditional cameras would need more hardware
and computation.

Every surveillance system must consider the tradeoff be-
tween resolution and FOV. The paracamera’s unique design
yields what may be a new pareto optimal design choice in the
resolution/FOV trade-off. We have the horizontal resolution
equivalent to a camera but cover the full of the
horizon.

With a wide field of view, objects to be tracked will cover
only a small number of pixels. With 4.2 pixels per degree, a
target of dimension 0.5m by 2.0m, at 50m is approximately 2
pixels by 8 pixels, i.e. 16 pixels per person. At 30m, it yields
approximately 32 pixels per person, presuming ideal imag-
ing. Realistic tracking in such a wide field of view requires
the processing of the full resolution image with a sensitive,
yet robust algorithm.

3 LOTS: The Lehigh Omnidirectional Track-
ing System

We discuss the main components of the LOTS system, in-
terjecting rationale for many of the design decisions. Most
of the design choices were informally tested empirically us-
ing a mixture of data sets and often compared to alternatives
which will not be discussed. We will briefly cover some of
the uniqueness of the algorithms and the techniques that al-
low full resolution processing at 30fps on standard PC hard-
ware. The algorithms could be applied (with some minor
changes) to regular perspective images. A system diagram is
shown in figure 2.

The tracker runs under Linux using MMX enabled pro-
cessors. The code described herein runs at full resolution
(640 480) images, 30fps on a 266 Mhz K6 with 32MB of
memory and a PCI frame-grabber. We have demonstrated a
smaller system based on a 166MMX in a Compact-PCI hous-
ing (12” 5” 5”) that tracks at 15fps. We are also porting the
tracker to our augmented Remote Reality “wearable” (a low-
power 133MMX based system), see [2]. The MMX features
are used only for the “differencing” part of the algorithm.

Although there are many “real-time” tracking systems, the
authors are unaware of any others that can provide full reso-
lution (640 480) tracking at a rate of 30fps using only COTS
hardware. Some of the contributions of this paper are tech-
niques intended to help achive this type of performance.

3.1 Background Modeling
Like many systems, our processing starts with change-detection
based on subtraction of a “background” image, . The use
of a stationary omnidirectional camera allow the develop-
ment of stronger background models than can be used in the
stop/stare approach of pan and tilt system. Our “background
subtraction” has three distinctive features: its adaption, its
multi-background modeling, and its thresholding method.

2



Figure 2. Main modules and data flow for LOTS System.

3.1.1 Adaption
Most background subtraction based systems use temporal in-
tegration to adapt to changing lighting, i.e.

, where a is the blending parameter, is the back-
ground image at time and is the image at time . Some
systems also utilize it to provide a streaking-effect or “mo-
tion history” which can increase connectivity and apparent
size for fast moving targets.

However, because of the very gradual image change inher-
ent with our target’s slow speed and small size, we use a very
slow temporal integration. The system supports pixel updates
with the effective integration (blending) factor from
(our fastest integration) down to , with

as the default value. Using such small frac-
tions is, of course, numerically unstable, especially when us-
ing 8 bit-images. Using double-precision images would be
significantly slower. For the sake of both speed and numer-
ical accuracy LOTS does not update the background images
every frame. Instead it reduces the rate at which the back-
ground is updated such that the multiplicative blending factor
is at least 1/32. For example, an effective integration factor
of 0.00006 is achieved by adding in 1/32 of the new frame,
every 512th frame. This has the advantage of reducing cost.
With its usual settings, the system only calls the update pro-
cess once each 64 frames. Since an update requires about a
million operations (per pixel it does 2 multiplications, an add,
and a shift), this produces a saving of 60 MIPS. At the same
time it lets the system handle very slowly moving targets.

Given a target that differs from a mid-gray background by
32, and a “threshold” of 16, the adaption results in it requir-

Figure 3. Tracking a sniper moving in the grass. The cam-

ouflage is quite good, but careful background differenc-

ing shows the location. Frame-to-frame motion is small, a

good sniper may take crawl at under .5 meters per minute

and be motionless for minutes at a time. In a single frame,

as is shown here, this it is almost impossible to see the

sniper.

ing between 2 to 4096 frames (1/15 of a second to 2+ min-
utes) for the target to become part of the background. To fur-
ther reduce target pixels blending into their background, pix-
els within identified “targets” are updated on only one fourth
of the update passes. The result is that moderate contrast tar-
gets, once detected, are “tracked” for between 1 second and
8 minutes, and low contrast targets generally last a minute or
two.

Our approach to adaption gives the detection system an
important asymmetric behavior: it is very quick to acquire
targets, but once detected, its very slow to give them up.
This is very important for low-contrast slow moving targets,
e.g. the sniper in figure 3. The downside of this approach
is that some false alarms tend to persist, and when objects
that were stationary for a long time depart, they leave behind
long-lasting ghosts. How these important issues are handled
will be in section 3.2.2.

While even the slowest of the above update rates is suffi-
ciently fast for gradual lighting changes such as normal sun
motion, it will not adapt fast enough to handle rapid light-
ing changes, e.g., the sun going behind a cloud. The system
handles rapid changes with a set of explicit lighting change
heuristics that are applied at a later stage of processing (af-
ter connected component labeling). These heuristics will be
described later.

The system also includes a “threshold adaption” compo-
nent. The primary per-pixel threshold (described below), is
adapted during each update process. The update process is
called after all processing for a frame is done, so it has access

3



to which pixels were above threshold as well as which pixels
are associated with actual targets. Using this information the
thresholds for pixels above threshold but not within targets,
i.e. threshold for “noise pixels” are increased thus reducing
their sensititivity and the chance of forming pure-noise tar-
gets. At the same time, all pixels that are not above threshold
have their thresholds slightly reduced, i.e. their sensitivity
is slighly increased. To increase stability, the threshold in-
crease for noisy pixels is larger than the reduction for below
threshold targets. The result is a process where the threshold
adapts itself so that each pixel is approximately at its “noise
floor”. This is important for maintaining the systems sensi-
tivity in changing conditions. Note that this adaption is not
statistical in the sense of a variance test often used in earlier
work. Updating a true variance model is expensive and only
appropriate if the noise is Gaussian. Since lighting variations
are the main point of adaptation (and generally get into ad-
justing AGC levels for cameras) and we don’t consider there
to be a single Gaussian model for the deviations from the
background. Our simple adaption is cheap and effective.

3.1.2 Multi-backgound models
While an adaptive background subtraction is used in each of
[11], [6], [5],
[1], as well as in many other papers, the use of a single “back-
ground” limits their robustness, especially when viewing out-
door scene’s with considerable clutter. Thus second signifi-
cant feature of our background technique is that there is not a
single background model, but 3 different backgrounds mod-
els, i.e. pixels can have 3 different “backgrounds”. This is
a significant advantage for ignoring real but contextually in-
significant motions such as moving trees/brush. When the
trees move they occlude/disocclude the scene behind them
and the system ends up building models for both backgrounds.

The idea of multiple backgrounds may sound similar in
spirit to the work of [10, 4]. Our multiple backgrounds are,
however, wuite different. Rowe and Blake, however, intro-
duced multiple-background to handle edge and parallax ef-
fects that occur when they generate a panoramic background
with a rotating camera. Their process is a preprocessing stage
and is far from real time.

More recently [4] developed a technique that attempts to
find the “optimal mixture of K Gaussians.” The paper does
not state how fast the multiple background models are up-
dated, but the overall system runs in “real time” on 320x240
images. Since their paper is about finding long-term trends, it
is not clear how useful their models are for basic background
segmentation for detection/tracking.

We desire a model that can be updated at frame rates and
can account for motion-based disocclusion. Rather than look-
ing for long-term trends in the data or optimal mixture dis-
tributions, our approach is explicitly trying to model motion-
based disocclusions.

We note that the testing against the secondary background

is done on a per pixel basis but that it adds very minimal cost
because it is only consulted when the pixel is significantly
above primary background, which is very infrequent. The
disadvantages of these two background models are the addi-
tional memory requirement, and the loss of sensitivity if the
secondary background is updated poorly.

Currently, we acquire the second background model by an
initial batch learning and with interactive supervised learning
when false-alarms occur. We are investigating more auto-
matic methods, which involve feedback from the high-level
tracking components of the system, however learning what
is “uninteresting” motion is not the same as learning what is
uncommon; it is both task dependent and semantic and there-
fore non-trivial. Hence our use of a supervised learning mode
where, if false alarms occur during processing, the user may
request that particular regions update their secondary back-
ground model to prevent further false alarms by that target.

We also point out for most of our data sets, the secondary
background generally does not update frequently enough to
allow good “statistical estimates.” effect was also noticed by
[10]. n We also point out that the secondary background gen-
erally does not update frequently enough to allow good “sta-
tistical estimates” and hence we do not maintain a secondary
variance image for thresholding. We update the secondary
background by an averaging process similar to the normal
background. However, we also note that, whenever the “up-
date value” for a secondary background pixel is very differ-
ent from its current value, we consider it an update failure,
i.e. an indication that the update is because the secondary
background model is in error rather than just undergoing a
lighting change. This update failuer can occur 3 or more dif-
ferent background values are actually needed to model this
point, e.g. because a it covers a moving target with signif-
icant texture. When we detect a update failure we replace,
rather than blend, the secondary background value.

The use of 2 background images to motion, of course,
could be viewed as just the begining. Why not use 3 or 4
or more? A major reason not to include more is that each
new allowed “background” will reduce the systems sensitiv-
ity, especially when working with gray scale images. A sec-
ondary concern is the ability to accurately update the third
and higher models. Finally, of course, there is the added
expense.

Both the primary and secondary backgrounds are updated
via the temporal blending to allow them to track slow lighting
changes. Unfortunately, the blending also means that targets
leave “ghosts” and that false alarms that are quite persistent.
To help handle these problems the system has a third back-
ground image (called the old-image) that is not updated via
a blending model. Rather it is a pure copy of an old image,
except that targets within that image are tagged as such. This
old image is always between 9000-1800 frames (5-10 min)
old and for efficient implementation purposes switches be-
tween two images. As described in section 3.2.2, comparison

4



Figure 4. Tracking soldiers moving in the woods at Ft.

Benning GA. Each box is on a moving target.

against this old-image is not done pixel by pixel, but rather it
is incorporated into the cleaning phase.

3.1.3 Thresholding
In addition to having multiple backgrounds, the system has
multiple backgrounding thresholds. The first, a global thresh-
old, handles camera gain noise and can be dynamically ad-
justed. The other is a per-pixel threshold which attempts to to
account for the inherent spatial variability of the scene inten-
sity at the pixel, e.g. points near edges will have higher vari-
ability because small changes in the imaging situation can
cause large intensity changes.

The detection phase uses a two level thresholding-with-
hysteresis, i.e., all pixels in a region must be above the low
threshold and must be connected to at least one pixel above
the high threshold. The low threshold is the sum of the global
threshold and the per-pixel variation. The high threshold is
currently set at 4 times the low threshold; if the variances
were true variances and the noise was Gaussian this would
assure us that at least part of each target was, with 99.9%
confidence, not noise. For computational speed, we cannot
afford to do two thresholding operations and a complex re-
gion growing approach. Instead, the two level thresholds are
maintained by initially doing a saturating subtraction using
the low threshold. We then test the result to see if it exceeds
the high threshold, and, if it does, we set some high order
bits in the “low-resolution” image to be described in the next
section. There is only one thresholding phase (and later only
one connected-components phase).

To keep the subsequent processing fast, the thresholding
process sets pointers to the initial and final pixels, per row,
that are above the low threshold. Rows with nothing above
threshold (usually 80% or more of the image) are skipped in
all subsequent processing.

Because we expect only a small growth in the number of
pixels above threshold, the thresholding counts the number
of pixels above threshold and checks this assumption. If it
is violated, it is probably a rapid lighting change or a rad-
ical camera motion. The system attempts to handle radical
growth by presuming it to be a rapid lighting change and tem-
porarily increases both the global threshold and the allowed
growth rate. This attempt to increase the thresholds is tried
twice. If it is successful in reducing the growth, we proceed
as usual except we force an update of non-target regions with
a blending factor much larger than usual.

If after raising the threshold a few times we still detect that
the number of pixels differing from the backgrounds is grow-
ing too fast then we presume the growth must be because of
camera motion. To handle camera motion we: skip track-
ing for this frame, then increase the allowed growth rate sus-
pending tracking for the next frame and call for an absolute
update (all pixels are updated). If camera-motion events are
considered significant, we also inform the user. The proper
fix, doing image stabilization, is in progress.

3.2 Region definition
After the basic “detection” phase we need to group above-
threshold pixels to define regions. A connected component
labeling is the core of this, however, the system also needs to
discard small “noise” regions. For the latter cleaning, peo-
ple often resort to morphological processing. Our approach
mixes small region removal with the connected components
processing in a novel way that is very efficient.

3.2.1 Quasi-Connected Components
Keeping the connected components process fast is aided by
three techniques. First, we only process the part of the row
between the leftmost pixel above threshold and the rightmost
pixel above threshold. The connectivity code also has special
cases for when the entire previous row was empty. Second,
the connectivity analysis uses a union-find data structure to
allow very fast association of regions. The usual union-find
was modified to also support the area and temporal associ-
ations used by our approach. The final, and probably most
interesting speedup, comes from a reduction in resolution.

During the thresholding-with-hysteresis process, the sys-
tem also builds a lower resolution image of those pixels above
threshold. Each pixel in this parent (low resolution) image
maintains a count of how many of its associated children
(high resolution pixels) were above threshold. Resolution
is reduced by a factor of 4 in each direction, thus the par-
ent image contains values between 0 and 16, and allow us to
have accurate low-level area counts for thresholding. When
a region is connected we compute its total area, in terms of
high resolution pixels. For example, a region which connects
4 “parent-level” pixels might have a total area of support of
only 12 pixels in the high resolution image (and would not be
connected at that level). The high-order bits of the low reso-
lution image were also set when the pixel was above the high

5



va
l=

4

area=1, not added
to parent image

(6
55

36
+

4)
va

l=
65

54
0

Area < min_area

Accepted region
area=20>min_area

Figure 5. Example showing thresholding with hysteresis,

quasi-connected components and area thresholding pro-

cessing.

threshold. As we add the areas we naturally find out if any
were also above the high threshold (we AND with a mask to
make sure they don’t overflow). In this way the thresholding-
with-hysteresis is computed along the way in the connected
component labeling processes, without the need for a second
thresholding pass or added iterative region growing. This
quasi-connected components idea can actually be viewed as
a direct extension of the idea of thresholding with hyster-
sis, where we allow the connections to jump over small gaps
within the “parent” pixel.

The connected component phase is only applied to the
parent image. In addition to the speedup due to data re-
duction, this resolution reduction also has the effect of fill-
ing in small gaps. The gap filling is spatially varying; the
maximum distance between “neighbors” varies from 4 to 8
pixels. While not as “uniform” as morphological process-
ing, it is considerably faster. When combined with the area
thresholding described below it can distinguish between a
small “solid” region and a fuzzy collection of isolated points,
something morphological processing cannot. We call the re-
sulting process quasi-connected components, see figure 5.

3.2.2 Cleaning Regions
After the connected components, we have a collection of re-
gions that are different from the backgrounds. The next phase

is to clean up noise regions and some expected, but uninter-
esting (to the end-user)differences. There are three differ-
ent cleaning algorithms: size, lighting normalized and unoc-
cluded region.

The goal of area thresholding is to remove noise regions.
The area thresholds, which are applied per region, use the
accumulated pixel counts from the parent image. The area
is not the number of pixels in the low resolution connected
components image, but rather the total count of high-resolution
pixels above the “low” threshold that are in the region. This
allows the system to detect (and retain) a human target at
50m, i.e., a 2 pixels by 8 pixels region in the full resolution
paraimage, while ignoring “larger” regions where there are
just a few noise pixels per “parent” pixel.

The second and third cleanings use normalized intensity
data. This is done by computing the average pixel intensity
within the target computed in three images: the input, the pri-
mary background, and the old-image. Computations are then
scaled by ratios of these values. We compute the normal-
ize factor across the whole region rather than doing a more
accurate, but more expensive, local normalization. In our ex-
perience to date, this has been sufficient for small and moder-
ate size regions, while large regions are usually thresholded
away by the area test.

The second cleaning looks for local lighting variations,
e.g. small cloud patches, sunlight filtered through the trees,
etc. We do this by redoing the “thresholding-with-hysteresis”
for the region, this time using a per-region normalized back-
ground intensity. It is done per-region so it can handle sun-
light filtered through the trees, a local intensity shift.

The third cleaning phase, is to see if it is a region where
a moving target has disoccluded the background, i.e. han-
dling a “ghost” image. This is done by doing a thresholding-
with-hysteresis comparison against an intensity normalized
version of the old image.

3.3 Tracking Regions
The tracking phase attempts to connect these regions to those
from previous frames. The simplest, and most common, as-
pect of this association occurs when the current region spa-
tially overlaps a region from the previous time frame. The
system actually checks for this association while it is do-
ing its connected components labeling. The labeling looks
at both the current parent image as well as the parent image
from the past frame. Objects that are connected in space-time
are labeled with the same label they had in the past frame,
which simplifies the search for potential matches.

After handling the spatio-temporal connected regions, only
a small number of regions remain unlabeled. Therefore, the
system can spend considerably more time trying to match up
these regions. It looks to merge new regions with near-by
regions that have strong temporal associations. It also looks
to connect new regions with regions that were not in the pre-
vious frame but that had been tracked in earlier frames and

6



Figure 6. Example from VSAM IFD demo with 3 perspective

windows tracking the top 3 targets. In the paraimagem

targets have trails showing their recent “path”.

disappeared. Both of these more complex matchings use a
mixture of spatial proximity and feature similarities.

For regions that are “tracked”, we maintain information
on their position (image and world), current and average ve-
locity (image and world), their size, length of time tracked,
path (most recent 100 positions), positions avert to their most
recent intensity distrbutions and their confidence measures.

3.4 The display and user feedback
While it is acceptable to run tracking algorithms directly on
the paraimage, it is not the best way to show the targets to
human users. LOTS provides the user a collection of win-
dows that contain perspectively corrected views. While any
number of windows are allowed, we generally use between
1 and 6 depending on the anticipated number of moving ob-
jects. The viewing direction within these windows can be
controlled via the mouse. More importantly, the system has
the capability to automatically choose views such that the
perspective windows track the most “significant” targets.
See figure 6 for an example.

Another feature of the user interface (UI) is the ability
to select both regions of interest and regions of disinterest
(“always” ignored). The latter can be used to exclude targets
in areas where motion is expected, but insignificant.

The UI can show a “density” of targets over the recent
past, can limit display to targets with a particular certainty,
and can toggle between targets having “trails”. These help in
isolating regions of potential problems, and in understanding
the nature of a target.

If a target perspective window contains a false alarm, the
user can provide runtime feedback and have it “ignore” that
target and update the multi-background model to attempt to
ignore it in the future.

The LOTS system has parameters allowing it to be tuned
to different conditions. A number of predefined scenarios
can be used to set these system parameters.

3.5 Geolocation
Up to now, all of the targets have been regions in the co-
ordinate system of the paraimage, or video in a perspective
window. While this is often enough for human viewing, it is
not sufficient for automated processing or for multi-camera
coordination.

The single-viewpoint constraint of the paracamera makes
it straightforward to “back-project” a ray into the world, and
also allows a simple calibration process. Given three 3D
world coordinate points on the ground plane, we can solve
for the transform from paraimage coordinates to the world
coordinates of the point on the ground plane that projects to
that a given image coordinate. The detailed equations for the
relation are beyond the scope of this paper.

Given the calibration points, we precompute a “map” that
gives the 3D coordinates of the back-projection of each pixel
in the paraimage, thus runtime computation is a trivial ta-
ble lookup. When the calibration points are chosen near the
“horizon”, the resulting 3D projection is usually quite good.
Localization of the calibration points, the presumption of a
ground plane (rather than a complex surface) and the ability
to localize a target are the limiting factors. While no formal
evaluation of the quality of this was performed, subjective
evaluation (based on watching target locations on the map vs
the live video), suggest about 1m accuracy for human targets
within 25-30m of the camera dropping down to 2-3m for tar-
gets at 50m.

3.6 A network of para-sensors
For each tracked object, the system computes and displays
via color encoding a heuristic confidence measure that is based
on many contributing factors including the object’s size, con-
trast, how long it has been tracked, and how fast/far it has
moved. This provides an easy way for users to crudely ad-
just their probability of detection versus false-alarm (FA) rate
by demanding only higher confidence targets.

A final component of our ongoing efforts is the multi-
camera coordination and a fully networked system. With this
extension, the targets are tracked in a local Sensor Processing
Unit (SPU) (computer/camera pair). As mentioned before
each paracamera SPU has a local “scheduler” for the most
significant targets. Target information and significant video
clips are integrated and displayed by a Networked Display
Controller (NDC). The NDC is in charge of network band-
width allocations and chooses amount the potential video
streams from the various SPUs . The goal is to have one
networked computer connected to 5-20 paracameras with all
of the “significant events” being viewed on the NDC.

One of the design constraints in our development was the
ability of the protocol to scale to a large numbers of sensors
each with a large number of targets while not saturating the
network. It has been demonstrated with wireless communi-
cation connecting the paracamera SPU to a mobile display
unit. When running in network mode the code can be slowed

7



down as network “targets” are sent only 4-5 times per sec-
ond. This may allow slower, lower power processors to be
used or multiple paracameras on each processor.

The network protocol design underwent a number of it-
erations and in mid-1998 we coordinated with CMU on a
compromised protocol which incorporated key ideas from
both the original CMU and the Lehigh design, see [8] for
details. (Most the formal specification and “official” code
was produced by CMU). The result was less bandwidth effi-
cient than our design but it was considerably easier to imple-
ment/use and something we could share among researchers
for the DARPA VSAM program.

A paracamera SPU was a part of the VSAM integrated
feasibility demonstration [7] where its targets were coordi-
nated with a number of CMU pan-tilt-zoom type SPUs. The
“mini-OCU” of the paracamera controlled 3 perspective views,
but 3D target locations of the top 7 targets were sent to the
coordinating CMU processor.

4 Evaluation
To support the evaluation of our system we collected omni-
directional image data at Ft. Benning in scenarios of interest
to the DARPA SUO-SAS program. Approximately 70 hours
of omni-directional video was collected and includes both
significant amounts of targets and empty scenes for false-
alarm evaluation. Atmospheric conditions ranged from light
rain and wind, partly sunny and windy to sunny with light
breeze. Limited amounts of data are available from the au-
thors.

Researchers at the Institute for Defense Analysis have done
some preliminary analysis of LOTS, as of Aug. 1998, and we
report on their evaluation.

The analysis showed approximately 95% detection rates
(ranging from 100% down to 87%) and false-alarm-rates rang-
ing from .15FA per min to 1.7FA per min. Almost all de-
tections were considered “immediate”, with only the most
difficult cases taking longer than a second. The scenarios
evaluated included: short indoor segments, two urban/street
scenes, two different wooded settings, a town edge and tree-
line and a sniper in a grass field. These evaluations did not in-
clude the use of any of our confidence measures, nor did they
allow for incremental learning or adaptive feedback on false
alarms. (We believe that all of these added features would
reduce the FA rate significantly with only small reductions in
the detection rates).

At the time of this initial external evaluation, the only
cleaning phase was area based. A large fraction of detected
false alarms were small to moderate sized locations with light-
ing related changes, e.g. small sun patches filtering through
the trees or shadows. In a wide field of view, many of these
appear very much like a person emerging from occlusion.
The “ghosting” of targets was also noted in their report. This
feedback lead to additional cleaning phases. The confidence
measures, feedback, and new cleaning processes, will be part

of a reevaluation scheduled for spring 1999.
Some mpeg videos of the tracker results are avaible at

http://www.eecs.lehigh.edu/ tboult/TRACK/

5 Conclusion & Future work
This paper presented the LOTS system and described some
of its unique design choices. The systems adaptive multi-
background modeling, temporal adaption techniques and quasi-
connected components are concepts that should be useful
in other tracking projects. Initial evaluation, by an external
group using realistic data, has shown the collection of tech-
niques to be both efficient and effective. The main limita-
tions (and hence subjects of ongoing/future work) are issues
related to target fragmentation, loss of identity during occlu-
sion and grouping of individual targets into one. Decreasing
the false alarm rate is also an ongoing activity.

References
[1] D. Beymer, P. McLauchlan, B. Coifman, and J. Malik. A real-

time computer vision system for measuring traffic parameters.
In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 1997.

[2] T. Boult. Remote reality via omnidirectional imaging. In Proc.
of the DARPA IUW, 1998.

[3] B. Flinchbaugh and T. Olson. Autonomous video surveillance.
In 25th AIPR Workshop: Emerging Applications of Computer
Vision, May 1996. See also DARPA IUW May 1997.

[4] W. Grimson, C. Stauffer, R. Romano, and L. Lee. Using adap-
tive tracking to classify and monitor activities in a site. In Pro-
ceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pages 22–29, 1998.

[5] I. Haritaoglu, D. Harwood, and L. Davis. : A real-time
system for detecting and tracking people in 2.5d. In Computer
Vision—ECCV, 1998.

[6] S. Intille, J. Davis, and A. Bobick. Real-time closed-world
tracking. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pages 697–703, 1997.

[7] T. Kanade, R. Collins, A. Lipton, P. Burt, and L. Wixson. Ad-
vances in cooperative multi-sensor video surveillance. In Proc.
of the DARPA IUW, pages 3–24, 1998.

[8] A. Lipton, T. Boult, and Y. Lee. Video surveillance
and monitoring communication specification docu-
ment 98-2.2. Technical report, CMU, Sept. 1998.
http://www.cs.cmu.edu/˜vsam/Documents
as vsam_protocol_98_22.ps.gz.

[9] A. Lipton, H. Fuijiyoshi, and R. Patil. Moving target detection
and classification from real-time video. In Proc. of the IEEE
Workshop on Applications of Computer Vision, 1998.

[10] S. Rowe and A. Blake. Statistical background modelling for
tracking with a virtual camera. In Proc. of British Machine
Vision Conference, 1995. Web version of a similar TR also
availble.

[11] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland.
Pfinder: Real-time tracking of the human body. IEEE Tran.
on Pattern Analysis and Machine Intelligence, 19(7):780–785,
1997.

8


