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Abstract
This paper addresses the problem of motion segmen-
tation using the Singular Value Decomposition of a fea-
ture track matrix. It is shown that, under general as-
sumptions, the number of numerically nonzero singular
values can be used to determine the number of motions.
Furthermore, motions can be separated using the right
singular vectors associated with the nonzero singular
values. A relationship is derived between a good seg-
mentation, the number of nonzero singular values in the
input and the sum of the number of nonzero singular
values in the segments. The approach is demonstrated
on real and synthetic examples. The paper ends with a

critical analysis of the approach.

1 Introduction and Previous Work

The use of “motion” information has been around
for many years, and considerable research progress has
been made. Little of this work on motion, however,
addresses the issue of segmenting the motions in a scene
into different components but rather assumes, often im-
plicitly, that that the images have been previously seg-
mented into their constituent motions. Previous work
on motion segmentation includes:

e intensity based image segmentation using known

depth [Peleg and Rom, 1990] [Yamamoto, 1990,

e looking for “boundaries” in “optic-flow fields” (i.e.
assuming locally uniform motion, but not knowledge
of depth), [Shizawa and Mase, 1990] [Adiv, 1985],
[Murray and Buxton, 1987],

e clustering in some type of a prior: defined paramet-
ric motion space [Fennema and Thompson, 1979],

[Dickmanns, 1989,

e techniques using Markov Random Fields to find
both a segmentation and description of a motion se-
quence [Heita and Bouthemy, 1990], [Subrahmonia
et al., 1990],

e and a technique which looks for 2 motion compo-
nents in an image sequence [Bergen et al., 1990b],
[Bergen et al., 1990a).
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Much of this work has made restrictive assumptions on
the scene/motion to allow segmentation or assumes con-
siderable @ priori information (e.g. a depth map).

The approach we introduce in this paper, segments
the motions in a scene into their different rigid body
motions without knowledge of camera or object motion,
shape, or depth. We assume an input of tracked features
and, except for the smoothness necessary for that track-
ing, the approach to segmentation and motion/shape
recovery does not require smoothness assumptions on
either the objects or the motion. To obtain these de-
sirable features we use the elegant “factorization ap-
proach” to shape/motion recovery. The idea of using
SVD factorization of motion tracks was recently intro-
duced (see [Tomasi and Kanade, 1990a],[Tomasi and
Kanade, 1990b]) and 1s discussed in more detail else-
where in these proceedings.

The paper 1s organized as follows: we first discuss the
SVD in a little more detail. We then present a short
review of Tomasi and Kanade’s ground breaking work
on SVD factorization and motion recovery. This ma-
terial in hand, we describe our approach in Section 3.
Section 4 presents some experimental testing of the ap-
proach, followed by a critical analysis in Section 5. We
end with some conclusions and a discussion of future
work.

2 Background

In this section we present background material on the
singular value decomposition and on the motion factor-
ization technique.
2.1 Some properties of the SVD

Assume, without loss of generality, 7 is an m X p
matrix, m > p. By computing the Singular Value
Decomposition (SVD) of the input I we can obtain
3 matrices L, X, R such that I = LYRT. Further-
more, L = [l1,5,...1,] is an p X p orthogonal matrix,

R = [r1,79,...7p] is an n x p orthogonal matrix, and
¥ is a diagonal p x p matrix diag(o1,09,...0,) with
o1 > 03 > ... > 0p > 0. The value o; is referred to

as the ith singular value, and the column vectors I;, r;
are, respectively, the ith left singular vector and the ith



right singular vector.

We now state some properties of the SVD which
will be useful in the remainder of the paper. There
is a strong relationship between SVD and eigenval-
ues/eigenvectors. In particular, the singular values are
the eigenvalues of 1T I and the right singular vectors are
its eigenvectors. Since I is a symmetric matrix, the
singular values are also the squares of the eigenvalues of
1. To help in visualizing how the SVD extracts much of
the structure inherent in a matrix, it 1s also helpful to
know that the singular values of the matrix I are pre-
cisely the lengths of the semi-axes of the hyperellipsoid
FE defined by F = {y|ly = Iz, ||z||]2 = 1}. Furthermore,
the location of the axes of this ellipsoid are given by the
columns of L. Thus the SVD is strongly related to the
principal component analysis of the data in I.

The relationship between SVD and principal compo-
nents explains why we are able to perform motion seg-
mentation using clustering of the right singular vectors.
Principal component analysis is generally performed to
reduce the dimensionality of a data set with many in-
terrelated variables to a much smaller set, the princi-
pal components, while retaining as much of the origi-
nal variation as possible. Each principal component is
composed of a linear function « which operates on the
vector z of random variables and maximizes the vari-
ance (and is uncorrelated with previously found compo-
nents). The kth principal component is given by a{x
where ay, is an eigenvector of the covariance matrix of z
corresponding to its kth eigenvalue. Since the right sin-
gular vectors of the SVD are the eigenvectors of 171,
they are precisely the principal components. In our
case, each random variable is the location of a feature
point given at different times. Random variables are
related in a definite way according to whether they are
part of the same motion. This is ultimately expressed
in the principal components.

If the SVD of I is such that o7 > ... > o >
Ok41 = ...0p = 0, then we know, Rank(I) = k and
I = Ele ol @r] = ﬁkf]kf{;— When the matrix
I is noisy, the issue of determining “numerical” rank,
call it R(I), is more difficult and will be discussed in
section 3.4.

Finally, we comment on the computational complex-
ity of the SVD algorithm. For our needs, the straight-
forward approach to the SVD costs around 7mp?+4p3 +
O(p* + mp) FLOPS for a matrix with m rows and p
columns. Code for computing the SVD can be found
in any good numerical package (LINPACK, EISPACK,
NAG, IMSL). We use a locally modified version of the
code from Numerical Recipes in C [Press et al., 1988].

2.2 Background on the shape/motion fac-
torization technique.

Our discussion of the factorization technique has
been broken into four terse subsections. We will treat
both the 2D case (motion restricted to a plane) and
the 3D case. The rationale for this is that the 2D case
is significantly easier to visualize and present while the
methods are very similar in practice.

All of the conceptual content of this section follows
from the work of Tomasi and Kanade. For the 2D
problem we follow [Tomasi and Kanade, 1990c] and
for the 3D problem we follow [Tomasi and Kanade,
1991]. This section is intended to introduce notation
for our development, and does not thoroughly explore
the factorization-based approach.

The following assumptions are needed to make the
approach feasible:

e the imaging system is orthographic,
o there are at least 3 frames

e there exists a feature tracker which can, given the
image sequence, solve the frame to frame correspon-
dence problem and track points over extended peri-
ods of time.

e cach object in motion yields > 3 points which are
tracked over the entire image sequence,

e amotion must have a nonzero rotational component.

Again, these are minimal assumptions. In general per-
formance will be better with more frames and more
points taken over a wide change in rotational angles.

2.2.1 Input representation: track matrix of
shapes in motion

The input to the factorization procedure is a matrix
I, representing tracks, i.e. image positions of feature
points over time. We assume there are p feature points
over f frames, and that in frame i point j is at pixel
location (u;;,v; ;) in the image plane. These can be
interpreted as a pair of matrices U and V giving the
horizontal and vertical component of the point’s loca-
tion respectively. Let U’ and V’ represent the same po-
sition matrices where each row has been shifted so as to
have mean 0 (i.e. independently subtract the centroid
of each frame from every element of that row). Tt is not
necessary that every frame of the motion sequence be in
the input matrix. In particular, while dense sampling
may be necessary for tracking, the input matrix can be
made from significantly fewer frames.

In the 2D case, our input matrixis f x p and is simply
U. For the 3D case we assume an input matrix W which
is (2f) x p with W = gj If the dimensionality of the
input does not matter, we will use 7 to represent the
input track matrix of size m x p.



2.2.2 Representing Shape

We represent a point in the world coordinate system
as p;. For the projection of this point in the 2D case,
we adopt a homogeneous representation (z;, z;, 1), so we
can represent translation. In 3D, where translation is
removed by subtracting the centroid of each frame, we
use the representation (z;,y;,2;). We can then collect
p of these point into a shape matrix, say S of size 3 x p,
by considering each point as a column in the matrix.

2.2.3 Representing Motion

In 2D let a; be the angle between the X axis and
the camera in frame ¢. The projection of point p; into
the image is given by u;; = [cos(a;), sin(a;), %] -
[zj,2,1]T, where t; is the projection, onto the frame
fi, of the translation vector (as measured from the first
frame). We can collect this into a motion matrix, Maq.

In the 3D representation, we assume a fixed world
coordinate system. In this coordinate system let 7;
be a unit vector (represented by its endpoint) which
is aligned with the image rows in frame f;, and let ¢; be
the unit vector aligned with the image columns in frame
fi. Given this, we see that U} ; = 7;-p; and V;/; = ¢;-p;.
Thus we can build a (2f) x 3 motion matrix taking 7;,
i = 1..f as the first f rows and ¢;, ¢ = 1..f as rows
(f+1)...2f.

With this notation we have U = My4S and W =
M34S, or letting the dimension be implicit 7 = M S.

2.2.4 Factoring the input matrix

Let us consider the SVD of I, and let ¥ be the sub-
matrix of 3 containing the numerically nonzero singular
values. Let L (R) be the associated rows (columns) of L
(R respectively). Then, as is always true for the SVD,
I =LYRT. We drop the ~ for simplicity and henceforth
the exact interpretation of L ¥ or R will be given by
the context.

Note that the dimensionality of the L and R matri-
ces are exactly the same as the dimensionality of the
shape and motion matrix because if the motion/shape
is not degenerate, then R(I) = 3. If welet M' = L- DE
and &' = ¥3 . RT, then we even have the same form
I = M’ .S [1In fact, these matrices are, up to an
affine transformation, exactly the shape and motion
matrices, i.e. there exists a nonsingular A such that
M = M -AS = A"1S". The exact procedure for
obtaining A depends on the dimension as detailed in
[Tomasi and Kanade, 1990c] and [Tomasi and Kanade,
1991]. Intuitively, A is obtained by requiring the re-
sulting motion matrix to have the proper orthogonality
properties.

3 Description of factorization-based

segmentation of multiple motions

In this section we first establish a relationship be-
tween the number of singular values and the number of
motions. We present a simple example of the approach
on real data. We end this section with a more tech-
nical discussion of the determination of rank and our
cluster analysis process.

3.1 Representing multiple motions and the
related number of singular values

When there is a single motion we consider the same
representation as in [Tomasi and Kanade, 1990c] and
[Tomasi and Kanade, 1991], (see Section 2.2) which
results in a matrix formulation of I = M S, where [ is
mxp, Mismx3,Sis3xpand m = 2f or f depending
on the dimension.

We now consider the case where there are two mo-
tions. Let M’ and M'" be motion matrices of size
m x 3. Let the associated shape points be S’ 5"
consisting of p’ and p” points respectively. Assume
these points are associated (in some order) with tracks
t;yi = 1,...,(p' + p").. Then we can represent the
track matrix I = MS, where M = [M'|M"] with
| being matrix concatenation. Each column §; is of
the form [S} 1,55 5, 5% 3,0,0,0]" if track ¢; is associated
with point Sj and of the form [0,0,0, S}, 575, S§'5] T if
track t; is associated with point S}

That such a decomposition accounts for the track
matrix is easily shown. Generalizing this to N motions
is straightforward, resulting in a motion matrix M be-
ing m x 3N and the shape matrix being 3N x E:zjlv Dk
3.1.1 Multiple motions and factorization: Def-

initions and observations

In some ways the motion matrix M is, in reality,
not a motion at all. It is not an optic flow; it is not
a parametric equation defining the path of the object;
it is not even, necessarily, the path taken by any point
in the scene. Instead, each row in the motion matrix
can be interpreted as the transformation which takes a
world point, in a fixed frame of reference, to its projec-
tion in the associated image frame. A motion is then
a subspace of f-dimensional space defined by the span
of the columns of M. The path (i.e. z(t),y(?), z(t))
taken by any single object point is represented as a sin-
gle point in this f-dimensional space, and hence we call
this path space. A rigid body motion requires all points
being considered to follow paths which are within the
span of the columns of the associated motion matrix M.
Since we cannot directly measure M, we will generally
consider the information in the columns of I, to define
the observable motion. We will use motion to mean ei-
ther real motion (M) or observable motion (I) where
the context should disambiguate the interpretation. We



now explore the ramifications of this representation.
In what follows, let I;,7 = 1..N be track matrices

of different motions with R(I;) > 0. Let M; be the

associated motion matrices and S; the shapes. Assume

no noise so that R(I) = Rank(I).

Definition 1 A track matriz I corresponds to a mo-
tion if and only if (hereafter iff ) ils columns span
a nonempty subset of path space

Observation 1-1 A track matriz I corresponds to a

motion iff R(T) > 0.

Definition 2 Assume I is associated with a single
motion (My and Sy assumed to be fx3 and 3xp re-
spectively. ) I is called nondegenerate iff R(I;) = 3.
That 1s, a nondegenerate motion spans a 3 dimen-
stonal subspace of path space. (Similarly define non-
degenerate My and Sy)

Observation 2-1 For N motions R(M) < 3N,
R(S) < 3N and hence R(I) < 3N.

Observation 2-2 A nondegenerate track matriz is
the product of a nondegenerate motion and nonde-
generate shape. Nondegenerate motions require at
least 3 frames. Nondegnerate shapes requires at least
3 points.

Definition 3 The track matriz I5 contains a different
motion from that of I iff the span of the columns of
Iy is not contained within the span of the columns
of I. That is Is has a motion different from I,
iff there are points in path space which could be as-
soctated with Iy which could never be generated by
the motion underlying Iy.

Observation 3-1 It follows that I contains a motion

different from that of I iff R(I1|I2) > R(11).

Definition 4 Two motions I; and I are said to be
different motions iff they each contain a motion dif-
ferent from the other. (Note that if the span of I
1s a proper subset of the span of Is then Is contains
a motion different from Iy, but not the other way
around).

Observation 4-1 It follows that Is and I, are differ-
ent motions iff R(I1|I3) > max(R(I1), R(I2)).

Observation 4-2 Note that such definitions, in terms
of subspaces, may not totally capture the intuitive
notion of “different motions”. If there are two well
separated clusters within a single subspace, humans
maught interpret them as different motions. This def-
wmition s saying that two motions are the same if
there exists a rigid body interpretation that makes
them the same. It does not preclude using additional
information to further label submotions with differ-
ent labels. (In fact, the algorithm o be presented can

often “segment” these well separated clusters, how-
ever it knows that they are, according to the above
definitions, 2 clusters from the same motion.)

Observation 4-3 Adding a single track from a “dif-
ferent” motion to I must increase the rank of I by

1.

Observation 4-4 If track matriz I is decomposed into

2 parts I and I, then R(I) < R(I1) + R(I2).

Definition 5 I and I, are called linearly independent
motions iff R(I1|I2) = R(I1) + R(I2).

Observation 5-1 A track matriz from N linearly in-
dependent motions will have R(I) = 3N.

Observation 5-2 If a track matriz I, composed of N
linearly independent nondegenerate motions (con-
taining at least 4 points each), is decomposed into
2 parts Ty and Iy, then R(I) = R(I1) + R(I2)
iff for every set of shape points {S}; associated with
a single motion {M}; in I, the tracks from these
points/motions are contained entirely in either I
or Iy. In simpler terms, under general motion as-
sumptions the segmentation of I is good (buil not
necessarily complete) if and only if the number of
nonzero singular values before segmentation is the
same as the sum of the nonzero singular values of
the segments.

To prove this last observation, let {A;S;}; be the
tracks from motion ¢ that appear in segment j, with
the understanding that if no points of motion i appear
in segment j, then {M;S;}; is empty. Also let seg-
ment j = 0 refer to the original (unsegmented data).
By definition we have, modulo some column permu-
tations, I; = {M1S1};]...[{MnSn};, which implies
R(L) = Ezi\f R({M;S;};). Thus we can restate our

observation as

i=N i= i=N
Z R({M;Si}o) < Z R({M;Si}1) + Z R({M;Si}2)

(1)
with equality holding if and only if the segmentation is
good. That a good segmentation implies equality fol-
lows directly from the above equation and the definition
of linear independence. To show that equality implies a
good segmentation we argue as follows. First, note that
since the number of nonzero singular values is always
nonnegative, the splitting of any motion cannot reduce
the right hand sum. Since each motion contains at least
4 points either all of its points are in one segment, in
which case 1t contributes a value of n to the right hand
side, or 1ts points are split across the partition and it
contributes a minimum of n + 1 to the right hand sum.



Noting that each motion’s contribution to the left hand
side 1s exactly n, the observation follows.

One of the reasons for proving the observation as
we did is that it provides insight to what may happen
if the assumptions of the observation are violated. If
there are motions with only 3 points, then a segmen-
tation may fail in an undetectable manner. More of
a potential problem is that if there are motions which
are linearly dependent, then there may exist incorrect
segmentations into two groups which will not increase
the total number of singular values. Luckily, the obser-
vation often holds even if there are linearly dependent
motions. If some of the motions are dependent, the
equality will hold if and only if all the points in the lin-
early dependent subset of motions are grouped into a
single partition.

The importance of this final observation should not
be overlooked. It provides a theoretical basis for check-
ing the segmentation. If we start with 3N singular val-
ues and eventually get N subsets with 3 singular values
each, we know that we have a correct segmentation!
3.2 Overview of approach

The method can be summarized as the following
steps:

1. Find tracks (we do not address this issue in this

paper) and compute track matrix T

2. Compute SVD yielding L, %, R
3. Determine R(]) and prune columns and rows of L
and RT respectively.

4. Generate clusters, using R, to get potential segmen-
tations.

5. For a potential segmentation, remove the ‘seg-
mented’ tracks from original image yielding I;, and
compute the SVD of each separately. If R(I) =
>; R(I;), then we know the partition is good, oth-
erwise we try the next clustering at this level. If
the last clustering fails, backtrack to the call to this
level.

6. Given a good partition, if a cluster has < 3 singular
values we compute shape and motion, else treat this
as a new input matrix for the next level of segmen-
tation and recursively goto step 2.

The first step, which we assume is handled by some
other process, determines the tracks of points in the
scene. We also expect an error estimate for the track
information. It 1s not really important that the tracks
are dense in either time or space, although the quality
of the motion estimate and shape estimates depend on
those densities respectively.

3.3 A simple 2D Example using Real Data

We now present a simple example which we will fol-
low through as we describe the algorithm in more detail.

1]
[l
Figure 1: Top shows original epi-polar image (graylevel
camera scanlines). The bottom figure shows the tracks
found for 57 points over 101 frames.

The motion was obtained by moving a camerain a plane
using a precision Datel rotation stage while keeping a
high contrast scene in view. While the camera rotated,
2 objects in the scene were independently moved. One
object (on the right) was rotated about its axis, and the
other was translated with a small amount of local rota-
tion. We obtained our epi-image by grabbing one 512
pixel scanline per frame time for 100 frames. To make
the segmentation task more difficult we moved the epi’s
of the two “objects” closer to produce the epi-image and
its associated edges shown in Figure 1. The high con-
trast objects allowed for easy “tracking” of features us-
ing a simple Sobel edge detector and edge linking which
locally fits a quadratic to the Sobel response and tracks
the maximum with subpixel precision. Tracks which
were not continued from the first line to the last line
were not included in the input matrix. Figure 2 shows
the segmented tracks determined by the algorithm.

Figure 2: Segmented tracks from detected motions

3.4 Determining rank

A central part of our segmentation algorithm re-
quires determining the rank or number of nonzero sin-
gular values for the idealized input which lead to the
measured input matrix 7. If, as is usually the case, our
desired input matrix, say D, is perturbed by noise (er-



ror), say E, then we cannot expect the singular value
decomposition of I = D + F to yield the exact number
of singular values of D; i.e. we need to do more than
determine the number of nonzero singular values. In
determining an approximation to the rank of D we will
use some knowledge of E.

It can be shown that the difference between the sin-
gular values of the ideal input, o (D) and the singular
values of the measured input, o(7) satisfy the following
properties:

(1) = ou(D)] S con(D), VE<p, ()

lou(1) = ou(D)| < r1(E) < |Elle Yk <p, (3)
and

P

(ox(I) = ou(D)? < ||Elp = Y_Ef;  (4)

where || -||2 and || -||r are the second and Frobenius ma-
trix norms respectively, and ¢ is the machine precision
for computation. See [Golub and van Loan, 1983, Sect
6.5 and Cor. 8.3.2, 8.3.5] for proofs and more detail.
We now develop bounds on R(i). Let be k* be the
smallest integer such that Yk > £*, o3(D) = 0. Notice
for k > k* we have o (I) — o3(D) = ox(I). Combining
this observation with equations 2— 4 we have a lower

bound

or(I) > eor (1),
or(I) > ||E||p, or (5)

R(I) > max k s.t. :
Vizk (D) > IE||F

i=k "

These lower bounds on R(7) require a conservative es-
timate (over estimate) of || F||p. Note this relies on rel-
atively weak knowledge of the noise £, and makes no
assumption about the shape of the error distribution.
In the examples in this paper we assume ||E||p < 61,
where 61 is set to be greater than or equal to the ex-
pected point RMS error. For real datasets, the expected
RMS is computed by computing the SVD of a known
nondegenerate single motion and subtracting the recon-
struction (using first 3 singular values) from the original
track matrix. For the example images estimated RMS
was .04.

In our upper bound we assume that there is a com-
putable predicate Np(E), which when applied to a ma-
trix £ returns true only if £ “must” be considered pure
noise. As we will see later, because we are interested in
tracks of motion, it is quite reasonable to assume that
any matrix must be noise if |E; ;| < 82, Vi, j. For the
real examples we have set a very conservative estimate
of 63 = .0016. (Our upper bounds would be smaller
if we were less conservative). Another reasonable noise

predicate can be obtained by assuming that for all ob-
servable T we will have ||E||p > é2.

Assuming that the predicate Np(E) is conservative
(i.e. it never returns TRUE if the matrix F could be
valid data), we can get an upper bound on R(I):

i=k
R(I) <min k s.t. Np (I - Zaili ® rZT) (6)
i=1

In words, the upper bound is the smallest k such that
the difference between I and the kth reconstruction of
I must be noise.

It should be noted that the sanctity of these
“bounds” depends on the conservative measures of the
noise models, while the distance between them (and
hence the usefulness in approximating R(7)) depend on
the error model being as sharp as possible, i.e. not too
conservative. In most cases the upper and lower bounds
differ by more than 1 and hence only restrict R(7),
rather than determining it. Because, as we shall see
later, it is convenient for our algorithm to have a single
number for R(7), in these cases we make a final “heuris-
tic” determination of it using a knee finding technique
on the logarithm of singular values between the upper
and lower bound. That is, we chose as R(7) the i that
has maximal curvature on the curve (i,log(o;)) for @
in the range determined by equations 5- 6. This last
heuristic step has correctly determined R(I) in most of
our test cases. It 1s important to note that without the
bounds to determine the search window, the knee find-
ing would be much more difficult since in the region of
valid singular values there may be other “local” knees,
especially in the case where there are multiple motions
of significantly different magnitudes.

For our 2D example, the 8 largest singular values
were 13820.38, 51.91 16.24 3.51, 1.96, 1.26, 1.14, and
.96. Just looking at the above numbers it would be
hard to determine if there was one or two motions with-
out knowledge of the expected noise and the bounds on
R. The algorithm for determining R determines the
bounds 4 and 34 and the knee finder determines that
there are 5 nonzero singular values. After segmentation
the algorithm found one cluster had 3 nonzero singular
values, the other 2 nonzero singular values.

3.5 Discussion of cluster analysis

First, we point out that the right vector associated
with the largest singular value, call it, r1, need not be
the vector which gives the best segmentation. If the
two motion parameters are sufficiently mixed together
in a particular dimension, but separated in another, the
row associated with a smaller singular value may actu-
ally give a cleaner segmentation. For a large number
of motions 1t 1s often the case that a row r; will allow



one to easily segment out a single motion, while lump-
ing the remaining N — 1 motions into a single cluster.
Therefore, it is useful to consider numerous r;’s.

This is really a general clustering problem, closely
related to clustering used in factor analysis. However,
because we have the ability to check a partition of the
data, we take a slightly more conservative approach.
Our goal is not to find all clusters at once, but rather
to proceed by breaking the data up into 2 partitions
and checking the break. If it is good, then we recur-
sively solve each of the sub-problems. Thus there are
three parts to our clustering algorithm: initialization
of clusters, refinement of clusters, splitting data and
checking clusters.

We perform the clustering as follows. First we use
the first right vector and use this to break the track
matrix into two new input matrices. The SVD of each
of the proposed segments is computed and we check
the number of singular values as suggested by Observa-
tion 5-2. If this check is satisfied we continue segmen-
tation on the new input matrices. If it fails, we then
try clustering on the second right vector. If this fails we
try the sum of the first two vectors weighted by their
singular values. Obviously we could add other choices,
but these have been sufficient for now.

For the 1D clustering problem initialization is
straightforward. We know we are looking for 2 clus-
ters, and we use the cluster with maximal separation
for initialization. In particular, we compute the near-
est neighbor distance for each point and use the largest
distance as the breakpoints between the clusters. For
the 2D clustering, we initially cluster on the maximal
separation of the first right vector.

Given the initial clusters, we refine them attempt-
ing to minimize the RMS distance of each point from
the cluster center. An algorithm for this is detailed in
[Duda and Hart, 1973, Ch. 6]. Applying this iterative
algorithm results in 2 clusters and a measure of com-
pactness (root mean square distance to cluster center)
for each cluster. In most of our examples, the number of
iterations =1, i.e. the initial clustering is already mini-
mal. In the very noisy cases however, the initial cluster-
ing is a poor approximation and the iterative improve-
ment offered by this approach can significantly improve
the quality of segmentation. The squared error nature
can, at times, cause a few outliers to be included in the
wrong cluster. The issues of normalization in cluster-
ing arise here (e.g. do we use o;7;, \/7;7;, or simply use
r;), see [Duda and Hart, 1973, pp. 216 ad pp. 224].
Currently we do not normalize.

Figure 3 shows the first two components of R used
in clustering on the 2D example. The points are shown
with labels so you can see which points correspond to

which motions. Note that the first right vector (associ-
ated with the first singular value) correctly classifies the
motions resulting in the aforementioned segmentation.
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Figure 3: Here we see the clustering for each track
shown in Figure 1 using its entry in the first right sin-
gular vector as the Y coordinate, and its entry in the
second right vector as the X coordinate. Each point is
labeled with the motion which generated it.

4 Initial Experimentation

Our initial experiments have been very promising.
Figure 4 illustrates our method applied to a dataset
with tracks from four different motions. The epi-image
was constructed in a similar fashion to our previous
2D example with real data except that additionally, we
combined epi-images acquired at different time periods
in order to have an example with more motions. The
tracks from each motion are contiguous and can be dis-
tinguished using the bottom image in this figure. Here
the tracks from two different motions can be clearly dis-
cerned; the tracks not in this image, make up the other
two motions. In Figure 5, ¢ we show the results of clus-
tering using the 2nd right right vector. Our algorithm
segmented the points marked with “x” from those with
the “0”. The latter correspond to the motion on the
right in the bottom image of Figure 4. However, it is
clear from this plot, that it is possible to segment all
four motion components just using the first two right
vectors of the original SVD, without further recursion.

We have also experimented with synthetic data using
both additive and multiplicative white noise, N (0, sd),
displacing each track point. We have been able to seg-
ment two motions with complete accuracy for noise lev-
els up to 50% of the point value. An example of this
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Figure 4: Top shows dataset with 4 motions. The mid-
dle shows the tracks found for 59 points over 100 frames.
The bottom shows the tracks of two clearly distinguish-
able motions.

is shown in Figure 6 which used 100 frames of 2 syn-
thetic 2D motions for random shapes with 30 points
each. This figure shows the tracks of both motions.
The bottom of Figure 6 contains these tracks with mul-
tiplicative white noise of sd = .5. If it were possible to
obtain the input tracks in such a noisy environment, our
algorithm would be able to segment them exactly. (We
note that the the right singular values clearly cluster
so that no tracks are mislabeled although the number
of significant singular values becomes very difficult to
determine and hence we cannot be sure that the seg-
mentation is good.)

The results of segmenting a difficult 3D synthetic
example with three motions can be seen in Figure 7.
(Points are labeled with their corresponding motion.)
The figure shows a plot of the first two right singular
vectors for each of 3 motions (10 random (overlapping)
shape points per motion, 50 frames of motion). The first
pass of the algorithm split the motion into two groups,
one containing motion 1 and the point labeled 3’; and
the second the remaining points. Initially it found 9
singular values, and after segmentation there were 4
and 6 singular values. The group with 6 singular values
(motions 2 and 3) were further decomposed into their
correct motion components.

This example also shows why it might be useful to
disregard the cluster labels for points on the fringes of
the cluster and then add them into the cluster after
recomputing the SVD. One way to do this would be to
split the tracks conservatively into two groups I; and I
( more than R(I) points each), and compute the SVD
of each. Then for any track ¢; that was on the fringe,
compute w = ﬁ;—tl This should have w; =~ 0,7 >
R(Iy) if t; is in the same subspace. While it sounds
promising, this technique has yet to be implemented
and tested.
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Figure 5: Here we see the clustering of the first 2 right
singular vectors for a realistic case with four motions.
The first segmentation splits the tracks labeled with an
“x” from those with a “o0” - the latter correspond to the
motion given by the tracks shown on the right in the
bottom of Figure 4.

5 Critical analysis

While the technique presented in this paper does, in
our opinion, a very good job at segmentation of mul-
tiple motions, there are still a few difficulties with the
approach. Most of the difficulties are actually problems
with the underlying factorization technique, and may,
we hope, be overcome with additional effort.

We present a check-list of the advantages (+) and
disadvantages (—) of this approach. Those aspects
which are both pros and cons will be marked with =+.

+ The segmentation approach using the R component
of the SVD appears to be extremely powerful.

+ The factorization technique simultaneously provides
shape and motion.

+ Shape is represented relative to object centroid and
hence is stable with respect to short-baselines in mo-
tion.

+ A technique for bounding and approximating the nu-
merical rank R(I) has been developed

+ The segmentation approach comes with a theoret-
ically derived check on the quality of the segmen-
tation (assuming linearly independent motions and
that R(I) is correct)).

+ The segmentation method is quite robust w.r.t. po-
sitional noise.

+ Cost is O(mn? + n?®) (with a reasonable constant).
If the number of points and frames are not too large
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The top figure shows the tracks with no noise and the
bottom for ¢ = .5.

this is quite reasonable. For example for 200 x 100
3D data set (hence a 400 x 100 input matrix) the
approach takes =~ 64 CPU seconds on a 12Meg-
SparcStationl.

— Factorization approach assumes orthographic pro-
jection.

— The segmentation method can have difficulties when
there are nearly dependent motions.

6 Conclusions and Future Work

This paper generalized the factorization approach for
simultaneous recovery of motion and shape to handle
multiple motions. It presented a technique, using the
information available from factorization, for the seg-
mentation of multiple motions. The method includes
a way to bound the numerical rank of the input and
proves how to use this to check, in general, that the
segmentation is valid. The segmentation technique was
demonstrated on numerous real and synthetic exam-
ples.

There 1s considerable future work to be done in the
area of factorization-based motion analysis.
ample, consider the many technical reports on which
Tomasi and Kanade appear to be working [Tomasi and
Kanade, 1991]. Much of that future work applies here
as well. There are a few things on which we expect
to continue working as they have particular impact on
our segmentation approach. These areas include a more
thorough error analysis of the segmentation including a
better analysis of different approaches to clustering (in-
cluding removing the fringe points), comparison with
previous motion segmentation techniques, and extend-
ing the factorization approach to handle partial tracks
and tracks distorted by perspective.

For ex-
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Figure 7: Here we see the clustering of the first 2 right
singular values for 3 synthetic motions. Point 3’ is mis-
takenly clustered in with the data from motion 1.
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