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Abstract. Detection followed by morphological and non-linear processing is a typical oper-
ator sequence used in machine vision systems. Performance characterization of the sequence
involves the derivation of the output image statistics as a function of the input image distri-
bution and the operator tuning parameters. Such a characterization is critical to the task of
automating the choice of tuning parameters in various applications. In this paper, we show
how one can propagate the error in the detection stage specified in the form of probability of
mis-detection and probability of false alarm through morphological operators. The detector
output is viewed as a binary random series that is transformed to another binary random
series by the morphological operation. An analytical derivation of the relationship between
the input and output binary series is rather difficult to characterize. The main essence of the
paper is the illustration that the segment and gap length statistics of the output binary series
can be numerically computed for morphological filters by using embeddable Markov chains.
Theoretical results are verified through simulations. Extensions of the theoretical analysis to
handle 2-dimensional filters are also considered in the paper. It is shown that the theory can
be modified to characterize 2D morphological filter outputs when the 2D structuring element
is decomposable into 1D elements.

Key words: Statistical Characterization, Mathematical Morphology, Embeddable Markov
Chains, Binary Random Series

1. Introduction

Pixel neighborhood level feature detection followed by a region level grouping
and/or morphological filtering (see [2], [9], [12], [14], [18]) is a typical opera-
tion sequence in video/image analysis systems for surveillance and monitoring,
document image analysis, machine inspection, etc. The robustness of these
algorithms is often questioned because of its use of arbitrary tuning constants
that are set by trials and errors. There has been limited research in perfor-
mance characterization of these algorithm sequences which is critical to the
task of automating the choice of tuning parameters in various applications.
We view the characterization of the algorithm sequence as the derivation of the
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output image statistics in the grouping step as a function of the statistics of
the output image in detection step, the grouping algorithm and its tuning pa-
rameters. The difficulty is in defining the statistical models for the input data
and the corresponding derivation of the output statistical models. Although
there exists prior work in the literature, this problem is difficult to solve even
for 1-dimensional signals. In this paper, the output of the detector is viewed as
a binary random series. The grouping algorithm output is viewed as another
binary random series whose segment and gap length statistics are functions of
the probability of false alarm and probability of mis-detection at the detection
step. The theoretical derivation of the expressions for the output binary series
statistics is rather difficult. However, we use a result from the statistics liter-
ature that allows calculation of probabilities of occurrences of run events in a
given sequence of Bernoulli trials by embedding the integer random variable
into a finite Markov chain. The distribution of the random variable of interest
is expressed in terms of the transition probabilities of the Markov chain and
can be calculated numerically. We show how the output statistics from oper-
ators on binary series (such as morphological openings, closings, etc.) can be
derived using the embeddable Markov chain approach. Theoretical results are
compared with simulations to validate the correctness of the theory. Extensions
of the theoretical analysis to handle 2-dimensional image non-linear filters are
also considered. It is shown that the theory can be modified to characterize 2D
morphological filtering operation outputs when the 2D structuring element is
decomposable into the application of multiple 1D operators.

The paper is organized as follows. Section 2 reviews past work on statistical
characterization of vision algorithms and identifies the work closest in spirit to
the current work. Section 3 identifies the problem and introduces the embed-
dable Markov chain approach. Section 4 shows the procedures for computing
the statistics of the binary series which is described in terms of segment/gap
run length distributions. We show the derivation of the distributions for the
output runs obtained through morphological closing (opening) operators for 1D
morphological filters in section 5. Section 6 describes how the 1D solution can
be extended to handle 2D morphological filters decomposable into a sequence
of 1D filtering operations. Section 7 discusses the experiments (simulations)
conducted to validate the theoretical results. We present our conclusion and
open research issues in section 8.

2. Related Work

There has been work in the computer vision literature on the statistical charac-
terization of vision algorithms. This work has addressed methodological issues
and has demonstrated performance analysis of components and systems ( [1],
[3], [16], [21]). Here the emphasis was on systems analysis, i.e. given a system
configuration, the system performance is characterized as a function of tuning
constants, ideal image model and perturbation model parameters.

More recent work involves statistical characterization of video analysis al-
gorithms for background adaption [5] and people detection and zooming [7].
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In both papers, the change detection step was characterized by the probability
of false alarm and the probability of mis-detection. Gao et. al., [5], analyzed
background adaption to identify how to formally setup the adaptation parame-
ters to achieve a given error rate, while Greiffenhagen et. al., [7], analyzed total
system performance for a people detection and zooming task and automated
the selection of the camera control parameters for a pan-tilt camera based on
statistical analysis.

Stevenson and Arce [19] were the first to analyze the statistical properties
of grayscale morphological filters under Gaussian noise. Costa and Haralick,
[10], analyzed the empirical distribution of the output gray levels for gray scale
morphological filters. Haralick et. al., [11], described the statistical charac-
terization for morphological filtering operations such as closings and openings
on input 1D binary signals, however, their input signal model was rather re-
strictive. The closest related work involves performance characterization of
boundary segmentation methods [17]. The paper provides a theoretical analy-
sis of edge detection, linking and grouping processes and provides a model for
boundary fragmentation of a given ideal boundary due to random noise and
the edge strength threshold. In addition that paper describe the output statis-
tics of the alternating segment and gap process after a morphological closing
operation (i.e. a gap filling operation). It is also worth noting that the analy-
ses presented in [17] are continuous domain analyses. They are limited in the
sense that they derive the fragmentation process statistics for a given probabil-
ity of detection uniform over the entire boundary. Our paper addresses a more
general model and allows for non-stationarity in the input process.

3. Embeddable Markov Chain Approach

This section considers the problem of detection and grouping illustrated in
figure 1. The main problem is to relate the statistics of the binary series in the
output to that of the binary series in the input, the morphology operator and
its parameters.

3.1. PROBLEM STATEMENT

; Ba(®
0

By(®

Fig. 1. System Diagram

More formally, let f(t) denote the mapping from the pixel index set {1,2,... ,N}
to the gray level measurements R. Let b(t) denote the ideal unknown function
representing the mapping that assigns the true labels (e.g. foreground/background
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(1/0)) for each index. The detection algorithm is viewed as a function that
maps f(t) to the binary series bg(t) by using a decision rule (that could be
spatially varying). Define pf(t) as the conditional probability that the detector

output by(t) = 1 given that the true label b(t) = 0. Let pm(t) be the conditional
probability that by(t) = 0 given b(t) = 1.

A natural representation of the statistics of by and 139 is the distribution
of the run lengths as a function of the filter parameters used (e.g. structuring
element sizes in a morphological operator). This representation is convenient in
the fact that it provides a natural way to interpret the results of morphological
operations. The size distributions of shapes (granulometries) have been used in
the morphology literature to describe signal statistics (e.g. [2], [14], [18]). We
therefore pursue the derivation of the statistics of the run lengths as a function
of b(t), b,(t), and the morphological operator parameter T,. Let C; denote the
number of runs of length [ in the output of the morphological algorithm. Our
objective is to derive the conditional distribution p(Cy; Ty, N |{pm(t)}, {pf(t)})
Most research in distribution theory of runs, [13] [15], has addressed this prob-
lem by using combinatorial analysis. However, past work assumed stationarity
(i.e. pm(t) = pm and pf(t) = pf), while we do not make any assumptions about
the form of py(t) and pf(t).

Our approach is to use a technique developed in [4] that embeds a dis-
crete random variable into a finite Markov chain to numerically compute the
probability mass function (pmf) of the discrete random variable. The pmf is
essentially computed as a function of the N-step transition probabilities of the
Embeddable Markov Chain (EMC). The main advantage of using the algorithm
is that Monte-Carlo simulations are prohibitively slow when probabilities for
unlikely events are being estimated.

In the next section, we proceed with a formal description of an EMC and
how it’s useful to compute the pmf for a discrete random variable. For more
details, please see the original paper, [4].

3.2. EMBEDDABLE MARKOV CHAIN APPROACH

For a given n, let T, = {0,1,--- ,n} be an index set and Q = {ay,--- ,an} be
a finite state space.

A nonnegative integer random variable X,, can be embedded into a finite
Markov chain if:

1. there exists a finite Markov chain {Y; : ¢t € I',,} defined on the finite state
space ).

2. there exists a finite partition {C,,z =0,1,--- ,1} on the state space Q.

3. for every = 0,1,---,1, we have p(X,, = z) = p(Y,, € Cy).

Let A; be the m x m transition probability matrix of the finite Markov chain
({Y::t € Ty}, Q). Let U, be a 1 xm unit vector having 1 at the rth coordinate
and 0 elsewhere, and let U, be the transpose of U,.. Finally, for every C,, define
the 1 x m vector U(Cy) = U

r:a.€Cy 7T

If X,, can be embedded into a finite Markov chain, then p(X, = z) =
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o (H:‘:I At> U'(C,) where m9 = [p(Yo = a1),--- ,p(Yo = an)] is the initial

probability of the Markov chain.

If the Markov chain is homogeneous (i.i.d. case), that is Ay = A for all
t € Ty, then Vo = 0,---,1 the exact distribution of the random variable X,
can be expressed by p(X,, = z) = moA"U'(C}).

In order to find the distribution for any embeddable random variable, one
has to construct: (i) a proper state space 2. (ii) a proper partition {C,} for
the state space, and (iii) the transition probability matrix A; associated with
the EMC. The exact process by which the state space is defined along with
the partitioning is dependent on the nature of the statistic of interest and the
operator used.

4. Statistics Calculation by using EMC Approach

Before we address the problem of deriving the run length distributions in the
output of a morphological algorithm, we first show how the EMC approach
can be used to derive the run length distribution of the observation of an
uncorrelated random binary series. Here, we wish to address the problem of
calculation of the joint run length distribution, i.e. “What is the probability of
having m runs with size M and n runs with size N?”

X1+1,0 7)(1,07 7X1,07 7X1,07
X2,0 X2+1,0 X2,0 X2,0
X3,0 X3,0 X3+1,0 X3,0
7)(3,07 7)(3,07 7)(3,07 7)(3+1,07
S O CR LT
1 X1,0 X1+1,1 X1,0 X1,0 X1,0
x2,00 1 | x2,0 |1 [xp+1,2/1 | x2,0|1 | x2,0
]
X3,0 X3,0 X3,0 X3+1,1 X3,0 |1
X3.0

v v . v
| X3.0] [ X3.0] | X3,0] 7x3+1,a

Fig. 2. Diagram of Run Length Statistics Calculation Example

State Space Construction: The state space construction for the compu-
tation of the distribution of run lengths is rather straightforward. View the
sequence of binary observations up to pixel T' as partial observations of the 0
and 1 runs. We need a variable z; to denote the number of observations of runs
of a given length 4 at pixel T" and an indicator variable m; to denote the situ-
ation whether the preceding number of ones is exactly equal to 4 or not. Thus
m; takes on value 1 if the last sequence of 1s is exactly equal of length i and
0 otherwise. The pair (X,M), X = [X1,... ,Xn, X} ],M = [my,... ,my,, m}]
denotes the states for the problem. Here z; denotes the number of runs larger
than n and m; is the corresponding indicator variable. Given these states it
is easy to see that the graph shown in figure 2 constitutes the Markov chain
for the run length statistics computation problem. In the graph, we focus on
the joint distribution of run length whose size is equal to or less than 3. We
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can simply extend the graph to meet the requirement of the joint distribution
of longer run length.

State Space Partition and Definition for A;: The partition of the state
space corresponds to the singleton sets of X with assigned count values. The
values for the probabilities in A; are given by the following expressions. For
example, the probability of observing a 0 at location ¢ is given by the sum of
two terms: the probability that the true value is 0 and there is no false alarm,
and the probability that the true value is 1 and there is a misdetection.

q:(0) = pyry{0}(1 — Pf(t)) + poty{1}pm(t) (1)
2:(1) = Pey{0}pf(t) + Pocy {1}(1 — pm(t)) (2)

where py(;){} is the distribution of the ground truth.

It is clear that a large state space is needed for calculating the joint dis-
tribution when n is large. For example, when n = 50, more than 10%* states
are needed, thus needing large memory for implementation. An incremental
approach to handle this problem is currently being investigated.

In image analysis problems one is not necessarily interested in the event of
observing the number of runs of a given length in a finite interval. Rather, the
interest is in obtaining the ratio of the number of runs of a given length to the
total number of runs in the interval. We use the term “weight distribution”,
[6], to describe the distribution of {52 }X_,, where N, is the number of runs

n=1>
with run length size n and N is the total number of runs in the interval.

5. Statistics for One Dimensional Morphology

In the previous section we have shown how we can derive the run-length statis-
tics for a binary random series before the application of the morphological
algorithm. The statistics can be derived for an uncorrelated binary series or a
correlated series defined in terms of a homogeneous or inhomogeneous Markov
chain [6]. In this section, we use the probability of observing a given number
of runs of length greater than or equal to S, G, s, after the closing operation
with closing parameter T, = L as an example to illustrate how the output
statistics of a morphological operator for binary series can be derived by using
the EMCs. The trick again is to devise the appropriate EMC. Similar EMCs
can be devised for openings, and openings followed by closings, etc.

State Space Construction: To construct the state space we have to
consider the property of the closing operation. Closing essentially fills gaps of
sizes less than a given length L. At any given pixel the output b,(¢) is a 1 if
and only if by(t) = 1 or ba(t) = 0 and there exists two neighbors with indices
t—iand t—j,i,j > 1, bg(t —i) = 1 and by(t + j) = 1 with j + i < L. This
implies that in addition to the number of runs of length greater than or equal
to S, the state space has to include information about the run length of the
last 1-run observed as well as the length of the last gap (if any) (0-runs) to
identify the partial state. One has to wait until the gap length is greater that
L before deciding to terminate a previous run.
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Formally, define the state variable to be (z, s, f) where z = 0,1, ... ,[ZT‘H]
denotes the number of success runs of size greater than or equal to k, s =
—1,0,..., Lis the number of successes in the last success run and f = —1,0,...,L

is the number of failures in the last failure run, L is the size of the structuring
element. The value —1 for f corresponds to a gap of length greater than L
that cannot be filled, while a value —1 for s corresponds to having a 1-run
of length greater than or equal to S. The left graph of figure 3 corresponds
to the initial condition for the state transitions. The right graph of figure 3
corresponds to the state transition diagram illustrating that the length of 1-run
observed before the start of the transitions is already greater than or equal to S
(i.e. the overflow condition). Figure 4 corresponds to the elements of the state
transition diagram for the case that the partial 1-runs observed have length
k<Sand k+ L+ 1< S. Figure 5 corresponds to the elements of the state
transition diagram for the case that the partial 1-runs are such that the con-
straint k+ L +1 > S is satisfied. Note that the diagrams are illustrative of only
the portions of the large state transition diagram for the Embeddable Markov
Chain. For illustration purposes we present only the parts of the diagram that
are the elements of the bigger graph. The bigger graph is the concatenation of
these individual elements over all (z, s, f) values.

State Space Partition and Definition for A;: The partition of the
state space is based on the number of success runs, . The values of transition
probabilities are given by ¢; and 1 — ¢; where

0 = poy{0}pA(t) + poy {1}(1 — pm(t)) 3)

Fig. 3.  State Transition for Closing Operator, Initial condition for Success Runs (Left);
Success Run Length Overflow (Right)

Fig. 4. State Transition for Closing Operator, Small Lengths

The statistics of runs for close-open or open-close operations can be com-
puted in a similar fashion as for the closing. The main difficulty is in the
definition of the transition diagrams for the Markov chain. The graph is more
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Fig. 5. State Transition of Closing Operator, Large Success Run Lengths

complex, but not infeasible to construct. The main idea is to try to use more
state variables to save all the temporary information and extend the graph
from a single layer representation to multi-layered graph.

6. Statistics for Morphology in the 2D Case

To our knowledge the literature for the two dimensional case focuses on either
the coverage processes, [8], spatial point processes and random sets, [20]. In
this section, we provide a method that allows us to do some analysis when the
2D operations could be decomposed into the sequential application of two 1D
structuring elements, horizontal and vertical for instance, [9].

Assume that we can decompose the two dimensional operation into a two
step process. The first step is easy to analyze since we can just use the previous
procedure. However, the second processing step cannot use the results of the
1D analysis because one has to take into account the fact that the data in the
direction of the operator application is correlated!. Even if the analysis assumes
that the binary series is independent, the independence assumption will no
longer hold in the morphological algorithm output for features in that direction.
However, if two filters are applied in orthogonal directions, say vertical then
horizontal, after the vertical pass the horizontal features is still satisfy the
independence assumption. Thus we can use the 1D analysis for analyzing the
statistics of the runs in the horizontal direction. The only thing we have to
do is to recalculate the new pf(t) and pm(t) since these have been altered as
a result of application of the morphological operation in the vertical direction.
That is, a given pixel with low value of pf(t) will have a higher value of pf(t) if
a vertical closing were applied.

We will use the closing operator as an example to explain the details. Sup-
pose the closing parameter is L. Let psr be the probability that, at each side
of ¢, there exists at least one pixel that is a success and the distance between
the success pixels on both sides is less than L. According to the closing rules,,
the pixel ¢ will have a success value when the distance is less than L.

pF () = Pl + (1 —pF(1) - pse (4)
P’ (t) = 1.0 —[Psc - pis (t) + (1 — pi (£))] (5)

For example, suppose we have a sequence a'b’'tab and the closing parameter is

1 We have used the EMC approach to evaluate distributions for multiple close-open oper-
ations applied in sequence. Details will be presented in a subsequent paper.
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2. What is the probability of psy? Let prr = 1 — psr, then,

prr =pla=F,b=F)4+pla=F,b=8b =F)+pla=S,a' =F,b =F) (6)

In general the methods described above cannot be applied to several mor-
phological operations applied in sequence. If one calculates the weight distance
before and after the closing operator, one can see that spatial correlation be-
tween pixels directly affects the distribution. Even though they are independent
before the morphology operator, the pixels are correlated after the operator.
Usually, after reestimating the probabilities of miss detection and false alarm,
we still cannot apply another morphology operator without validating the in-
dependence assumption, or by coming up with a Markov Chain approximation
to the correlated series. The problem is that the order of this chain changes as
a function of the structuring element parameters used. Our calculations for 2D
morphology works only because of the independence assumption. In general,
as long as the independent assumption is validated in the original data and the
two directions are orthogonal, after applying a 1D morphology operator in one
direction, we can apply another 1D morphology operator in the other direction
by reestimating the false alarm probability and miss detection probability. The
method can be extended to 3D orthogonal morphology operations.

7. Simulation Validation

As in previous work on analysis of Morphology we present simulation results
to validate the theoretical results. It can be applied on real data, if one verifies
that the input assumptions hold, but the acquisition of ground truth for real
data is quite problematic.

Run Length Weight Distribution, p, =01
Run Length Weight Distibution, p, =01 "

Weight

gl

0 B © 7 O ERY W B ®m  m w ®
Run Length Size Number Run Length Size Number

Fig. 6. Run Length Weight Distribution, 1D

Figure 6 shows the simulation and theoretical calculation results of run
length weight distribution with sequence length 10 and 50. The variance of the
weight distribution (not shown in the figure) is larger comparing to the value
of the mean than usual. This can be explained as follows: In the simulation,
we fix the total number of pixels to be M. Then, the total number of runs in
the sequence is also a random variable. For any given number of runs, N, the
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estimate of the weight is §,|N ~ N(qu, W).
E{qu} = qu (7)
. 1
o’ldu] = qu(l=a) ) PN ®)
N

Figure 7 shows the simulation and theoretical calculation of the run length
weight distribution for 2D closing operation. In the experiment, independence
assumption is assumed and closing parameter is 2 by 2. The effect of closing

operator is clearly shown.

Run Length Weight Distribution

+——+  simulation before
e—=o calculation before
simulation 1D
s=—=a calculation 1D
simulation 2D
calculation 2D

5 10 15 20 25 30 35 40 45 50

Run Length Size Number
Fig. 7. Run Length Weight Distribution, 2D

Table I gives the calculation and simulation results for the parameter rees-
timation for 2D closing case. The original false alarm probability is 0.4.

TABLE 1
Probabilities Reestimation
Iz 1] G
0.4 0.400043 0.0157815

0.07168 0.0716085 0.0170479 (H stat.)
0.0716085 0.00762734 (V stat.)

9.99¢ —5 0.000118256 0.000669619

Additional experiments not shown here were conducted to validate the the-
ory. We refer the reader to a technical report, [6].

8. Conclusion

In this paper, we introduce the embeddable Markov chain approach for com-
putation of statistics of runs in the output of detection and grouping stages.
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The method can also be applied to analyze other non-linear filters. Through
simulation, we show that as long as the input model is valid, we can use this
approach to compute the statistics rather than doing a brute force simulation
to get the statistics. Developing techniques to validate the input model for
real data is an area of ongoing research. The results presented herein can
be used in any aspect of vision processing using morphology to automate the
parameter selection (e.g. structuring element sizes). The verification of this
aspect is a subject of ongoing research. Extension of the method for repeated,
non-separable 2D operators is an open research issue.
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