
Imaging-Consistent Super-Resolution
�

Ming-Chao Chiang Terrance E. Boult

Columbia University Lehigh University
Department of Computer Science Department of EECS

New York, NY 10027 Bethlehem, PA 18015
chiang@cs.columbia.edu tboult@eecs.lehigh.edu

Abstract
This paper introduces two algorithms for enhanc-
ing image resolution from an image sequence. The
“image-based” approach presumes that the images
were taken under the same illumination conditions
and uses the intensity information provided by the
image sequence to construct the high-resolution im-
age. This ideal, however, is almost always not true
when the illumination varies. The “edge-based” ap-
proach, based on edge models and a local blur es-
timate, circumvents these difficulties. The paper
presents the theory and the experimental results us-
ing these two algorithms.

1 Introduction
The idea of super-resolution, combining images by
combining peices from an image sequence into a sin-
gle image with higher resolution than any of the in-
dividual images, has been around for years. Previ-
ous research on super-resolution, [Huang and Tsai-
1984, Gross-1986, Peleg et al.-1987, Keren et al.-
1988, Irani and Peleg-1991, Irani and Peleg-1993,
Bascle et al.-1996], ignore the impact of image warp-
ing techniques. They also presume that the images
were taken under the same illumination conditions.
The objective of this paper is to address techniques to
improve the quality of super-resolution imaging and
to deal with lighting variations. We show that image
warping techniques may have a strong impact on the
quality of image resolution enhancement.

Image warping requires the underlying image to be
“resampled” at non-integer locations; it requires spa-
tially varying image reconstruction. When the goal
of warping is to produce output for human viewing,�
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only mildly accurate image intensities are needed.
In these cases, techniques using bi-linear interpola-
tion have been found sufficient. However, as a step
for applications such as super-resolution, the preci-
sion of the warped intensity values is often important.
For these problems, bi-linear image reconstruction
may not be sufficient; the spatially varying nature of
the reconstruction limits the “efficient” alternative re-
construction methods. This paper shows how ideas
of imaging-consistent reconstruction/restoration al-
gorithms [Boult and Wolberg-1993] and the integrat-
ing resampler [Chiang and Boult-1996b], can be used
for warping while maintaining superior image qual-
ity.

2 Image-Based Super-Resolution
The idea of super-resolution is based on the fact that
each image in the sequence provides small amount
of additional information. There are, of course, some
fundamental limits on what this combination can do.
If the images were noise-free, focused and Nyquist
sampled, then multiple images would add nothing.
However images are blurred and with the noise and
aliasing present in images, deblurring is unstable. If
time is not a concern, then standard DSP techniques
can address these problems, formulating fusion as
millions of coupled equations. The goal is then to
come up with an efficient approximation.

Our approach treats recognizes four separate com-
ponents, the matching (to determine alignment), the
warping (to align the data and increasing sampling
rate), the fusion (to produce a less noisy image),
and an optional debluring stage to remove lens blur.
For now we are using tradational matching on im-
age fields (normalized SSD or correlation) and tra-
dational debluring. We are concentrating our efforts
on warping and fusion. Warping is considered in the
next section.
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Figure 1: Orginal images and down-sampled ver-
sion of super-resolution results. (a) shows one of
the eight original images. (b) shows the down-
sazmpled super-resolution using bi-linear resam-
pling. (c) down-sampled super-resolution using QRS
(d) shows a deblured orginal (i.e. deblurred (a).
(e) shows down-sampled super-resolution by back-
projection (f) shows supre-resolution with QRS fol-
lowed by deblurring followed by down-sampling.

For fusion we have experimented with simple aver-
aging, which is good if there are no outliers, aver-
ages with trimed tails and median. These produce de-
creasingly accurate estimates with increasing robust-
ness to outliers. As the matching is sometimes inac-
curate and because of aliasing artifacts, a few outliers
are common, thus the trimed tails is probably the best
overall technique.

In [Chiang and Boult-1996a] we presented inital re-
sults and compared our technique the leading exist-
ing work of [Irani and Peleg-1993] (which is refered
as back-projection in the following. Figs., 2, 3 and 1
show some example results. In all cases the resulting
super-resolution images are a scale-up by a factor of
4. We note that previous work on this topic reported
results only scaling by a factor of 2.

If we down-sample our the super-resolution estima-
tion, we should get an increase in image quality. A
few examples of this are shown in Fig. 1. It can
be easily seen from Fig. 1 that image warping tech-
niques indeed have a strong impact on the quality en-
hancement, even with the image resolution is not in-
creased. In particular, Fig. 1f is significantly clearer
than the original (Fig. 1a) or a deblurred version
thereof (Fig. 1g). Thus, super-resolution provides
added benefits even if the final sampling rate is ex-
actly the same as the original.

Fig. 2 shows the final results of our first experi-
ment. Fig. 2a shows Fig. 1a blown up by a factor

(a)

(b)

(c)

Figure 2: Fig. 1a pixel-replicated by a factor of 4;
(b) super-resolution by back-projection; (c) super-
resolution using QRS with deblurring.
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Figure 3: Effects of debluring and reconstruction
kernel. (a) shows Fig. 2(c) without deblurring. (b)
shows super-resolution using bi-linear resampling
with deblurring; and (c) shows (b) before deblurring.

of 4 using pixel replication. Fig. 2b shows super-
resolution by our implementation of Irani’s back-
projection method using bi-linear resampling to sim-
ulate the image formation process and Fig. 3a as the
initial guess. Fig. 2d, super-resolution using QRS
followed by deblurring. Fig. 3 shows the effects of
debluring and of using bi-linear reconstruction for
warpping.

Fig. 4 shows our second example, shows a more com-
plex gray level image. The tread-wheels of the toy
tank are visible in the super-resolution image but not
in the orginals, and the “tank-number” is (just) read-
able in the supre-resulution image while not in the
orginals.

Results from our first two experiments show that
the image-based method we propose herein is not
only computationally cheaper, but it also gives re-
sults comparable to or better than those using back-
projection. In general, our method is often more than
two or three times faster. See [Chiang and Boult-
1996a, Chiang-1996] for details. Moreover, it is eas-
ily seen from Figs. 1, 2, and 3 that integrating resam-
pler outperforms traditional bi-linear resampling.

3 Imaging-Consistent Warping

We consider the imaging model in figure 5. Due to
the limit of space, we only briefly review the integrat-
ing resampler, more details (including the image for-
mation process and the sensor model) can be found
in [Chiang and Boult-1996b, Chiang-1996].

An algorithm is called imaging-consistent if it is
the exact solution for some input function, which,
according to the sensor model, would have gener-
ated the measured input. For image reconstruction,
we achieve this by computing a functional restorta-
tion (i.e.,

���
), then blurring it again by the pixel’s

PSF. This actually defines a whole class of image
restoration/reconsturction techniques, depending on
the model for

� �
. Probably the simplest method to

consider is based on a piecewise quadratic model for
the image. If we assume a Rect PSF filter for the pho-
tosite, the imaging consistent algorithm is easy to de-
rive, see [Chiang and Boult-1996b]. To ensure that
the method is local and function is continuous, and
that the method is local, we define the value of the
reconstruction at the pixel boundaries ��� and ���	��
 ,
to be equal to �
� and ���	��
 , where we compute ���
with some technique, e.g. cubic convolution. Given
the values �
� at the pixel edges, combined with the
imaging-consistent constaint (the integral across the
pixel must equal the measured intensity) results in ex-
actly three constraints. From this, one can determine
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Figure 5: The image formation process and the relationship between restoration, reconstruction, and super-
resolution.

the quadratic polynomial for
� �

. This gives the intra-
pixel restoration. For super-resolution, we consider
only this intra-pixel restoration (abbreviated QRS in
the following discussion). Reconstruction can be de-
rived by simply blurring the resulting restoration by
a PSF of the same scale as input.

To define the integrating resamplers, we general-
ize the idea of the imaging-consistent algorithms de-
scribed above. Whereas imaging-consistent algo-
rithms simply assume the degradation models are
identical for both input and output; the integrating re-
samplers go one step further, allowing (1) both input
and output to have their own degradation model, and
(2) the degradation model to vary its size for each out-
put pixel.

When we are resampling the image and warping its
geometry in a nonlinear manner, this new approach
allows us to efficiently do both pre-filtering and post-
filtering. Because we have already determined a
functional form for the input, no spatially-varying fil-
tering is needed, as would be the case if direct in-
verse mapping were done. The integrating resampler
[Chiang and Boult-1996b] also handles antialiasing
of partial pixels in a straightforward manner.

4 Edge-Based Super-Resolution
For almost all applications involving an image se-
quence, the problem of lighting variation arises, even
when they are taken consecutively in a well con-
trolled environment. If the images are not from a
short time span, variations are often significant. The
idea we propose herein is a simple solution, we fuse
edge and blur information and use that to combine it
with one of the orginal intesnity image to reconstruct
the super-resolution image. This does not necessarily
solve the lighting variation problem. But, this effec-
tively avoids the problem of lighting variation since
we are now dealing with a single image and the edge
positions that are less sensitive to the change of light-
ing. This means that we can, at least, get rid of most
of the undesirable effect of lighting variations.

However, to fuse all the edges together, it requires
that the edges be first detected and then warped.
It also requires a image reconstruction technique
that directly incorporates both the edge and inten-
sityies. This will allow the reference image to be
reestimated and scaled up based on the edge mod-
els and local blur estimation. We have generalized
the idea of the imaging-consistent reconstruction al-
gorithms to deal direclty discontinuities in an image
[Boult and Wolberg-1993, Chiang and Boult-1996a,
Chiang-1996]. More details can be found in [Chiang
and Boult-1996a, Chiang-1996].

Given the image sequence, our edge-based super-
resolution algorithm is shown, as follows:

1. Estimate the edges and blur models using the
procedure described in Section 4.1.

2. Estimate the motions involved in the image se-
quence.

3. Choose one of the images as the reference image
(the one with lighting right). Scale the reference
image up and deblur at the same time it is being
scaled up.

4. Warp all the edges/blur models to the reference
image and fuse them.

5. Use the fused edge/blur models and the reference
image to compute the super-resolution intensity
image.

6. Optional debluring stage.

4.1 Edge Localization& Local Blur
Estimation

Typically, edge detection involves the estimation of
first and second derivatives of the luminance func-
tion, followed by selection of zero crossing and
extrema. While the world does not need yet an-
other edge detector, we define using our imaging-
consistent model because allows us to work in a
consistent framework and to tie the edge-model into
the image reconstruction algorithm. The edge lo-
calization/detection is obtained by differentating the
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Figure 4: Results from a toy-tank sequence. (a) one
of the original images blown up by a factor of 4 and
deblurred; (b) super-resolution using QRS followed
by deblurring.

functional form of the image reconstruction model
and considering only significant maxima of the first
derivative. 
 The edge model is tied into the image
reconstruction in that each pixel is now modeled as
potentially having a discontinuity, while still satsify-
ing the imaging-consistent constraint. The model we
use is still peicewise quadratic and the integral ac-
cross the pixel, including any step discontinuity,must

�
Yea there is a threshold hiding there. Future work will address how

to better determine significant vs insignificnat edges, and, more impor-
tantly, if this should be done before or after the fusion of the “edge-
models”.

still equal the measured data. If a discontinuity is in-
cluded within a pixel, the approximations used for
the pixel boundaries are recomputed using data from
only one side of the discontinuity.

In [Chiang and Boult-1996a], we showed that deblur-
ring after image fusion is most effective for super-
resolution imaging. However, that work presumes
that the blur is not dominated by depth-of-field ef-
fects. This allows us to replace a spatially-varying
point spread function with a cascade of two simpler
components: a spatially-invariant blur and a geomet-
ric warp. Unfortunately, this assumption is almost al-
ways not true in practice.

In [Chiang and Boult-1997]. we propose a new algo-
rithm for local blur estimation. The idea of this al-
gorithm is to model a blurred edge with two compo-
nents: a step edge and a blur kernel. We assumes the
step edge is from ) to )+*-,�.�/1032 where ) is the un-
known intensity value and , is the unknown ampli-
tude of the edge. The blur of this edge is modeled by
a “truncated” Gaussian blur kernel4 /103265 
7 �98;:=<�>@?BA;C � ��9: ��D
where E is the unknown standard deviation, Given
the functional form of our reconstruction, we can
solve directly for the three parameters of the blured
edge model.

For the examples we again presume that “motion”
is computed, which for general lighting changes is
much more difficult. For the examples here we use
a normalized SSD computation.

5 Image-Based vs. Edge-Based
Due to the limit of space, we only briefly compare
the two algorithms proposed herein. Both algorithms
take time roughly proportional to the number of im-
ages in the image sequence, with the image-base fu-
sion being the faster of the two, producing a 500x500
superresolution image in a few seconds on a Ultra-
sparc.

If the variation of lighting is small, such as in an
controled indoor environment, the image-based ap-
proach is more appropriate because it uses the in-
tensity information provided by the whole image se-
quence to construct the super-resolution image and
thus is better at removing the noise and undesirable
artifacts. On the other hand, the edge-based algo-
rithm is more appropriate if the variation of illumi-
nation is large.

If the images the variation of lighting is intermedi-
ate, a possible solution is probably a hybrid of the
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Figure 6: Edge-based example using 32 81x81 images: (a) and (b) are two of the original images blown up
by a factor of 4 with pixel replication using pixel replication; (c) is super-resolution using the image-based
algorithm without deblurring at the end; and (d) shows results with debluring.

two algorithms we propose herein. The idea is that
instead of choosing a single reference image of the
edge-based super-resolution algorithm, use the aver-
aging or median of a sub-sequence out of the image
sequence as the reference image, presuming that the
variation of lighting is not so significant within the
sub-sequence.

6 Future Work
Further work is needed before the super-resolution
algorithm is robust enough for general use in VSAM
applications, inparticular we need to incorporate a
more robust sub-pixel matching algorithms and in-

clude better debluring algorithms. Quantitatively
analysis of both approaches is now under way using
recognition rates as the benchmark.

7 Conclusion
This paper introduces two algorithms for enhanc-
ing image resolution from an image sequence. The
image-based approach presumes that the images
were taken under the same illumination conditions
and uses the intensity information provided by the
image sequence to construct the super-resolution im-
age. The edge-based approach, based on edge mod-
els and a local blur estimate, circumvents the difficul-
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ties caused by lighting variations. We show that im-
age warping techniques may have a strong impact on
the quality of image resolution enhancement.
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