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Abstract

Videosuneillanceis watchinganareafor significant
events. Perimeteisecuritygenerallyrequireswatch-
ing areaghatafford trespassengasonableoverand
concealment. Almost by definition such*“interest-
ing” areashave limited visibility distance Thesesit-

uationscall for awidefield of view, andareanatural
applicationfor omni-directionalVSAM.

Thispapersummarizesurongoingeffortsondevel-
oping an omni-directionaltracking system. We be-
gin with a few examplesandthendiscussthe back-
groundand applicationconstraints.We endwith a

summaryof our approactandits novel components.

1 Examples& Background

The paracameraystem capturesomni-directional
videothatallows oneto generateggeometricallycor
rect perspectie imagesin ary viewing direction.
Figurel shavs anexample.

While unwarpingin multiple directionsandthendo-

ing trackingontheperspectie imagesvould bepos-
sible,it would addconsiderablexpense.Therefore,
we areworking directly in the complex geometryof

theparaimage.

While it is acceptableo run trackingalgorithmsdi-
rectlyontheparaimageit is notthebestwayto shov
thetamgetsto humanusers.The systemprovidesthe
usera collection of windows that containperspec-
tively correctedmages.While ary numberof win-
dows areallowed, we generallyusebetweeri and6
dependingn the anticipatechumberof moving ob-
jects. The viewing directionwithin thesewindows
canbecontrolledviathemouse pr setautomatically
suchthatthe perspectie windows trackthe N most
“significant” targets.

Notethe “spatialresolution”of the paraimages not
uniform. While it may seemcounterintuitive, the

*Thiswork supportedn partby DARPA VSAM program.

Figurel: Trackingsystemwith a singleperspectie
“target” window.

spatialresolutionof the omni-directionalimagesis
greatest along the horizon, just where objectsare
mostdistant. While the processscalesto ary size
imager the currentsystemsuse NTSC (640x480)
or PAL (756x568)cameras.If we imagethe whole
hemispherethethe spatialresolutionalongthe hori-
zonis %)gr&% = 4.232;—68'23(5.1 PAL) which
is 14.3arcminutegerpixel (11.8PAL). If we zoom
in on the mirror, cutting off a smallpartof it, to in-
creasaheimagedmirror diametetto 640pixels(756
PAL), we canachiere 10.7(6.6 PAL) arcminuteper
pixel.

As apointof comparisonletusconsidemtraditional
“wide-angle” perspectie camera. It would take 3
cameraswith a 150° horizontal FOV to watch the

. 640 —
horizon,but of theseeachwould have Tsodegrees

4.2623;—253 i.e. aboutthe sameasthe paracamera.

Clearly the traditional cameraswould need more
hardwareandcomputation.
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Ft. BenningGA. While thelack of motioninforma-
tion andloss of resolutionin printing hasobscured
thedetails,eachboxis on amaoving tamget.

Every suneillancesystemmustconsiderthe trade-
off betweerresolutionandfield-of-vien. The para-
cameras uniquedesignyields what may be a new
paretooptimal designchoicein the resolution/field-
of-view trade-of. We have the horizontalresolution
of a 150> camer&but cover thefull 360° of the hori-
zon.

With awide field of view, objectsto betracked will
cover only a smallnumberof pixels. With 4.2 pix-
els perdegree,a tamget of dimension0.5mby 2.0m,
at 50mwill be approximately2 pixels by 8 pixels,
i.e. 16 pixels perperson.At 30m, it yields approx-
imately 32 pixels per personpresumingdealimag-
ing. Realistictrackingin a suchawide field of view
requiresthe processingf the full resolutionimage
with asensitve yetrobustalgorithm.

Trackingsystemsboundeg.g.,se€Flinchbaugrand
Olson-1996,Intille et al.-1997, Wren et al.-1997
and our systemdraws ideasfrom theseand mary
otherpapers Outdooroperationn moderateo high
cover areagestrictsthe technigueghatcanapplied.
Furthermorewe arelooking for soldiersnot track-
ing pedestriang a storeor parkinglot. Somecon-
straints,and their implicationsfor our systemsin-
clude:

e Correlationtemplatematchingandrelatedtech-
nigues cannot be effectively used becausein
a paraimagejmage translationis a very poor
model; objectstranslatingin the world undego
rotationandnon-linearscaling.

e Thelighting is unconstrainedWe musthandle
sunlight filtered throughtreesand intermittent

cloud cover. (We arenot consideringlR cam-
erasyet).

e Tametswill probablyusecamouflageo blend
in, socolor is not likely to add muchinforma-
tion. Figure2 shavs anexamplescenewith sol-
dersin thewoods.

e Trees/brush/cloudsll move. The systemmust
have algorithmsto help distinguishthese“in-
significant”motionsfrom targetmotions.

e Mary tamgets will move slowly (lessthan %
pixel per frame); somewill maove very slowly.
Somewill try very hardto blendinto themotion
of the trees/brush. Thereforeframe-to-frame
differencingis of limited value.

e Tametswill not,in generalbe“upright” or iso-
lated. Thuswe have not added“labeling” of
talgetsbasedon simple shape/scale/orieation
models.

¢ Tamgetsneedto be detectedquickly, whenthey
arestill very smallanddistant.

¢ Since field use will require ruggedizedlow-
power units, we shouldusegenericcomputing
hardware.

2 LOTS: Lehigh Omnidirectional Tracking
System

For the pastyearwe have beenworking on devel-
oping a systemthatcanwork within the constraints
discussedn the previous section.Note thatmostof
thesearegenericproblemconstraintandarenotde-
pendenton the geometryof the paraimage. Thus,
the algorithmscould be applied (with someminor
changes)to regular perspectie images. We will
briefly cover someof the uniquenesof the algo-
rithms andthe techniqueghat allow full resolution
processingt full 30fpsframerateson standardPC
hardvare.

Like mary systems, our processingstarts with

change-detectiobvasedon subtractionof a “back-

ground” image. Becausea stationaryomnidirec-
tional cameragloesnot needto panandtilt to cover
aviewing large area,it hasopportunitiesfor devel-

oping strongbackgroundnodels. Our “background
subtraction”hasthreedistinctive features:its adap-
tion speedjts backgroundnodeling,andits thresh-
olding method.

Most backgroundbasedsystemsusetemporalinte-
gration to adaptto changinglighting. Marny also
benifit from it “streaking” effect which, for large
fast moving tamgets, increasesonnectrity and ap-
parentsize. However, becausef the very gradual
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imagechangeinherentwith our targetsslov speed
and small size, we use a very slow temporalin-

tegration. The systemsupportspixel updateswith

the effective integrationfrom 25% of the new image
(very fastintegration) down to 0.006%o0f the new

image. For example,givenatagetthatdiffersfrom

the backgroundby 32, anda “threshold” of 16, this

takes between2 to 4000 frames(1/15 of a second
to 2+ minutes)for the targetto becomepart of the

background.For graduallighting changeseventhe

slowestof theseis sufficiently fast;for rapidlighting

changesg.g., the sun going behinda cloud, alter

native heuristicsare applied. For the sale of both
speedand numericalaccurag the systemdoesnot
updatethe backgroundmagesevery frame, rather
it reducesthe rate at which the backgrounds up-

datede.g.aneffective integrationfactorof .006%is

achiered by addingin 1/32 of the new frame,every
512frames.To furtherpreventtamgetsfrom blending
into thebackgroundthe pixelswithin adetectedar

getsare updatedoneforth asoften. Side-efects of

this approacharethatsomefalsealarmstendto per

sist,andwhenobjectsthat are stationaryfor a long

time depart they leave behindlong-lastingghosts.

The secondsignificant feature of our background
techniqueis that thereis not a single background
model,but 2 differentbackgroundsnodelsj.e. pixel
can have 2 different“backgrounds”. This is a sig-
nificantadwantagefor ignoring real but contextually

insignificant motions such as moving trees/brush.

When the treesmove they occlude/disoccludéhe
scenebehindthemandthe systemendsup building

modelsfor both backgroundsCurrentlywe acquire
the secondbackgroundmodel by an initial batch
learningwith interactve supervisedearningwhen
false-alarmoccur We are beginning to look into

more automaticmethods.If falsealarmsoccurdur

ing processingthe usermay requesthat particular
regionsupdatetheir secondarypackgroundnodelto

preventfurtherfalsealarms. The testingagainstthe
secondanbackgroundaddsvery minimal costbe-
causeit is only consultedwhenthe objectdoesnot
matchthe first background. The disadwantagesare
theadditionalmemoryrequiremenandthecomple-

ity in thelearningalgorithms.

In additionto having two backgroundsthe system
hastwo thresholdsThefirst, aglobalthresholdhan-
dlescameragain noiseand canbe dynamicallyad-
justed.The seconda perpixel level threshold han-
dlestheinherentvariability of thescenéntensityata
point. Thethresholdusedin changedetectionis the
thesumof thesetwo componentsTheactualthresh-
olding hasbothan MMX optimizedandnon-MMX

implementation.

To keepthe subsequenprocessingast, the thresh-
olding processkeepspointersto the initial and fi-
nal pixels, per row, thatareabove threshold. Rows
with nothingabore threshold(usually80% or more
of theimage)are skippedin subsequenprocessing.
Becauseave expectthereto be only a small collec-
tion of pixelsabove thresholdthethresholdingphase
checksthis assumptionlf it is violated, it is proba-
bly arapidlighting changeandthesystenmtriesafew
heuristicio compensate.

After thresholding,the systemneedsto find con-
nectedcomponents. Keepingthis processfast is
aidedby two techniquesFirst, only pixels between
eachrow’s initial andfinal abore thresholdpixel are
processed.The connectiity codealso hasspecial
casedor whenthe entire previous row wasempty
The second,and more significant speedup,comes
from areductionin resolution.Thethresholdingro-
cessalso builds a lower resolutionimage of those
pixelsabove threshold.Thepixelsin the parent(low
resolution)imagemaintaina countof howv mary of
the childrenwereabove threshold.Sinceresolution
is reducedby afactorof 4 in eachdirection,thepar
entimagecontainsvaluesbetweerD and16.

The connecteccomponentphaseis only appliedto
the parentimage. In additionto the speedupthis
alsohastheeffect of filling in mary smallgaps.The
gap filling is spatially varying; the maximumdis-
tance‘neighbors”variesbetweerd and8 pixels.

After the connectedcomponentgrocessingthe de-
tectedregionsare subjectedo areathresholdingto

remove noiseregions. Theareathresholdsvhichare
appliedperregion usethe accumulategbixel counts
from the parenimage.This allows the systento de-
tect(andretain)ahumantamgetsat50m;i.e.,a 2 pix-

els by 8 pixels region in the full resolutionparaim-
age.

After the connectedcomponentswe have a col-
lection of regionsthat are differentfrom the back-
ground.Thetrackingphasettemptdo connecthese
regionsto thosefrom previousframes.Thesimplest,
andmostcommon,aspecbf this associatioroccurs
whenthe currentregionsis “on top of” the previous
region. The systemactually solves this part of the
associationwhile it is doing its connecteccompo-
nentdabeling. Thelabelinglooksatboththecurrent
parentimageaswell asthe parentimagefrom the
pastframe.Objectsthatareconnectedn space-time
arelabeledwith the samelabelthey hadin the past
frame.(Segmentatiorof individualswithin a closely
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pacledgroupis not, currently beinginvestigated.)

After handling the spatio-temporalconnectedre-
gions,only asmallnumberof regionsremain.There-
fore, the systemcan spendconsiderablymoretime
trying to matchup theseregions. It looksto meige
new regions with nearby regions that have strong
temporalassociationslt alsolooksto connectnew

regions with regions that were not in the previous
framebut thathadbeentrackedin earlierframesand
disappearedBoth of thesemorecomplex matchings
usea mixture of spatialproximity andfeaturesimi-

laritiesandarea majorissuein our ongoingefforts.

For eachtrackedobect thesystencomputesanddis-
playsvia color encodinga heuristicconfidencenea-
surethatis basedon mary contrikuting factorsin-
cluding the objectssize, contrast,how long it has
beentracked, and how fast/ar it hasmoved. This
providesaneasywayfor usergo crudelyadjusttheir
probability of detectionversusfalse-alarm-ratéoy
demandingnly higherconfidenceamets.

As part of our VSAM project, and in an effort
to begin evaluationof omnidirectionalimaging for
SUO-SAS,we made3 trips to Ft. Benningto col-
lect omni-directionalimagedata. This datawill be
usedthroughoutthe 1998-1999%time frame to de-
velop,tune,andevaluateour omni-directionatrack-
ing algorithms. Approximately 70 hoursof omni-
directionalvideo wascollected. Dataincludesboth
significantamountsof “targets” and empty scenes
for false-alarmevaluation. Atmosphericconditions
includelight rain, partly sunry andwindy to sunry
with light breeze.Limited copiesof dataare avail-
ableuponrequesfrom tboult@eecs.lehigh.edu

Researchersat the Institute for DefenseAnalysis
have donesomepreliminaryanalysisof the tracler,
asof Aug 1998, over different scenarios. The re-
sultswereapproximately95%detectiorpercentages
(rangefrom 100%down to 87%) anda false-alarm-
ratesrangingfrom .15FA perminto 1.7FA permin.
Thescenariogvaluatedncludeda shortindoor seg-
ments two urban/streetcenestwo differentwooded
settingsatown edge(half dirt/sandyandhalf urban)
anda sniperin a grassfield. (Theseevaluationsdid
notincludethethe useof ary confidencemeasures,
nor did it allow for incrementalearningor adaptve
feedbaclonfalsealarms.)

Partof theirfeedbackvasthatourcurrentfalsealarm
rateis too high. A large fractionof our currentfalse
alarmsare small to moderatesized location with
lighting relatedchangesge.g. small sunpatchedil-
teringthroughthetreesor shadavs. In awidefield of

view, mary of theseappeawnery muchlike a person
emeging from occlusion. We are currentlyinvesti-
gatingtechniquesin additionto the currentadaptie

(supervised)earning,to label theseasinsignificant
eventsor at leastto reducetheir “confidence”with-

out impacting probability of detectionfor real tar

gets.We arealsoaddressing hnumberof minor user
interfaceissues.

A final componentof our ongoing efforts is the
multi-cameracoordinationand a fully networked
system. With this extensionthetamgetsaretracked
in local sensorprocessingunits (computer/camera
pairs) coordinatedby an overall controlunit (OCU)
which tracks results, handlestarget hand-of and
doesintegrationof informationin 3D. Targetinfor-
mation and significantvideo clips are displayedby
a networked display controller (NDC). The goal is
to have onenetworked computerconnectedo 5-20
paracamerawith all of the“events”beingviewedon
NDC. Oneof the designconstraintsn our develop-
mentwasthe ability of the protocolto scaleto large
numbersof sensoreachwith a large numberof tar
getswhile not saturatingthe network. The design
underwenta numberof iterationsandin the spring
we coordinatedvith CMU on the designof the cur-
rent VSAM protocol which incorporatedkey ideas
from boththe original LehighandCMU designs.

Our tacler is runningunderLinux usingMMX en-
abled processors. The code describedhereinruns
at 30fpson a 233 Mhz K6 with 32MB of memory
anda PCI frame-grabber We have demonstrate@
smallersystembasedon a 166MMX in a Compact-
PCI housing(12x5x5) that tracksat 15fps. (We re
now upgradingthatto a 233MMX in a ruggeden-
closure.) We are also porting the tracler to our
augmentedRemoteReality“wearable”(alow-power
133MMX basedsystem)see[Boult-1998.
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