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Abstract

Videosurveillanceis watchinganareafor significant
events.Perimetersecuritygenerallyrequireswatch-
ing areasthatafford trespassersreasonablecoverand
concealment.Almost by definition such“interest-
ing” areashave limited visibility distance.Thesesit-
uationscall for awidefield of view, andareanatural
applicationfor omni-directionalVSAM.

Thispapersummarizesourongoingeffortsondevel-
oping an omni-directionaltrackingsystem.We be-
gin with a few examplesandthendiscusstheback-
groundandapplicationconstraints.We endwith a
summaryof ourapproachandits novel components.

1 Examples & Background
The paracamerasystemcapturesomni-directional
videothatallows oneto generategeometricallycor-
rect perspective imagesin any viewing direction.
Figure1 shows anexample.

While unwarpingin multipledirectionsandthendo-
ing trackingontheperspective imageswouldbepos-
sible,it wouldaddconsiderableexpense.Therefore,
we areworking directly in thecomplex geometryof
theparaimage.

While it is acceptableto run trackingalgorithmsdi-
rectlyontheparaimage,it is notthebestwayto show
thetargetsto humanusers.Thesystemprovidesthe
usera collectionof windows that containperspec-
tively correctedimages.While any numberof win-
dows areallowed,wegenerallyusebetween1 and6
dependingon theanticipatednumberof moving ob-
jects. The viewing directionwithin thesewindows
canbecontrolledvia themouse,or setautomatically
suchthat theperspective windows track theN most
“significant” targets.

Notethe“spatialresolution”of theparaimageis not
uniform. While it may seemcounterintuitive, the
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Figure1: Trackingsystemwith a singleperspective
“target” window.

spatialresolutionof the omni-directionalimagesis
greatest along the horizon, just where objectsare
most distant. While the processscalesto any size
imager, the current systemsuse NTSC (640x480)
or PAL (756x568)cameras.If we imagethewhole
hemisphere,thethespatialresolutionalongthehori-

zonis
����� pixels� � �	�
���� degrees


������ pixels
degrees(5.1PAL) which

is 14.3arcminutesperpixel (11.8PAL). If we zoom
in on themirror, cuttingoff a smallpartof it, to in-
creasetheimagedmirror diameterto 640pixels(756
PAL), wecanachieve10.7(6.6PAL) arcminutesper
pixel.

Asapointof comparison,letusconsideratraditional
“wide-angle” perspective camera. It would take 3
cameraswith a ������� horizontalFOV to watch the
horizon,but of theseeachwouldhave

�����
����� degrees



����� pixels

degrees, i.e. aboutthe sameasthe paracamera.

Clearly, the traditional cameraswould needmore
hardwareandcomputation.
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Figure2: Trackingsoldiersmoving in thewoodsat
Ft. BenningGA. While thelack of motioninforma-
tion andlossof resolutionin printing hasobscured
thedetails,eachbox is onamoving target.

Every surveillancesystemmustconsiderthe trade-
off betweenresolutionandfield-of-view. The para-
camera’s uniquedesignyields what may be a new
paretooptimaldesignchoicein the resolution/field-
of-view trade-off. We have thehorizontalresolution
of a 150� camerabut cover thefull 360� of thehori-
zon.

With a wide field of view, objectsto betrackedwill
cover only a small numberof pixels. With 4.2 pix-
elsperdegree,a targetof dimension0.5mby 2.0m,
at 50m will be approximately2 pixels by 8 pixels,
i.e. 16 pixelsperperson.At 30m, it yieldsapprox-
imately32 pixelsperperson,presumingidealimag-
ing. Realistictrackingin a sucha widefield of view
requiresthe processingof the full resolutionimage
with asensitive yet robustalgorithm.

Trackingsystemsabound,e.g.,see[Flinchbaughand
Olson-1996,Intille et al.-1997, Wren et al.-1997]
and our systemdraws ideasfrom theseand many
otherpapers.Outdooroperationin moderateto high
cover areasrestrictsthetechniquesthatcanapplied.
Furthermore,we are looking for soldiersnot track-
ing pedestriansin a storeor parkinglot. Somecon-
straints,and their implicationsfor our systemsin-
clude:
� Correlation,templatematchingandrelatedtech-

niques cannot be effectively used becausein
a paraimage,image translationis a very poor
model;objectstranslatingin theworld undergo
rotationandnon-linearscaling.� The lighting is unconstrained.We musthandle
sunlight filtered throughtreesand intermittent

cloud cover. (We arenot consideringIR cam-
eras,yet).

� Targetswill probablyusecamouflageto blend
in, so color is not likely to addmuchinforma-
tion. Figure2 showsanexamplescenewith sol-
dersin thewoods.

� Trees/brush/cloudsall move. The systemmust
have algorithmsto help distinguishthese“in-
significant”motionsfrom targetmotions.

� Many targets will move slowly (less than
����

pixel per frame); somewill move very slowly.
Somewill try veryhardto blendinto themotion
of the trees/brush. Thereforeframe-to-frame
differencingis of limited value.

� Targetswill not, in general,be“upright” or iso-
lated. Thus we have not added“labeling” of
targetsbasedon simpleshape/scale/orientation
models.

� Targetsneedto be detectedquickly, whenthey
arestill verysmallanddistant.

� Since field use will require ruggedizedlow-
power units, we shouldusegenericcomputing
hardware.

2 LOTS: Lehigh Omnidirectional Tracking
System

For the pastyearwe have beenworking on devel-
opinga systemthatcanwork within theconstraints
discussedin theprevioussection.Notethatmostof
thesearegenericproblemconstraintsandarenotde-
pendenton the geometryof the paraimage.Thus,
the algorithmscould be applied(with someminor
changes)to regular perspective images. We will
briefly cover someof the uniquenessof the algo-
rithms andthe techniquesthat allow full resolution
processingat full 30fpsframerateson standardPC
hardware.

Like many systems, our processingstarts with
change-detectionbasedon subtractionof a “back-
ground” image. Becausea stationaryomnidirec-
tional camerasdoesnot needto panandtilt to cover
a viewing large area,it hasopportunitiesfor devel-
opingstrongbackgroundmodels.Our “background
subtraction”hasthreedistinctive features:its adap-
tion speed,its backgroundmodeling,andits thresh-
oldingmethod.

Most backgroundbasedsystemsusetemporalinte-
gration to adaptto changinglighting. Many also
benifit from it “streaking” effect which, for large
fast moving targets, increasesconnectivity and ap-
parentsize. However, becauseof the very gradual
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imagechangeinherentwith our targetsslow speed
and small size, we use a very slow temporal in-
tegration. The systemsupportspixel updateswith
theeffective integrationfrom 25%of thenew image
(very fast integration) down to 0.006%of the new
image.For example,givena target thatdiffers from
thebackgroundby 32, anda “threshold”of 16, this
takes between2 to 4000 frames(1/15 of a second
to 2+ minutes)for the target to becomepart of the
background.For graduallighting changes,even the
slowestof theseis sufficiently fast;for rapidlighting
changes,e.g., the sun going behinda cloud, alter-
native heuristicsare applied. For the sake of both
speedand numericalaccuracy the systemdoesnot
updatethe backgroundimagesevery frame, rather
it reducesthe rate at which the backgroundis up-
dated,e.g.aneffective integrationfactorof .006%is
achieved by addingin 1/32of thenew frame,every
512frames.To furtherpreventtargetsfrom blending
into thebackground,thepixelswithin adetectedtar-
getsareupdatedoneforth asoften. Side-effectsof
this approacharethatsomefalsealarmstendto per-
sist,andwhenobjectsthat arestationaryfor a long
timedepart,they leave behindlong-lastingghosts.

The secondsignificant featureof our background
techniqueis that there is not a single background
model,but 2 differentbackgroundsmodels,i.e. pixel
canhave 2 different “backgrounds”. This is a sig-
nificantadvantagefor ignoringrealbut contextually
insignificant motions such as moving trees/brush.
When the treesmove they occlude/disoccludethe
scenebehindthemandthesystemendsup building
modelsfor bothbackgrounds.Currentlywe acquire
the secondbackgroundmodel by an initial batch
learningwith interactive supervisedlearningwhen
false-alarmsoccur. We are beginning to look into
moreautomaticmethods.If falsealarmsoccurdur-
ing processing,the usermay requestthat particular
regionsupdatetheirsecondarybackgroundmodelto
prevent further falsealarms.Thetestingagainstthe
secondarybackgroundaddsvery minimal cost be-
causeit is only consultedwhenthe objectdoesnot
matchthe first background.The disadvantagesare
theadditionalmemoryrequirementandthecomplex-
ity in thelearningalgorithms.

In additionto having two backgrounds,the system
hastwo thresholds.Thefirst,aglobalthreshold,han-
dlescameragain noiseandcanbe dynamicallyad-
justed.Thesecond,a per-pixel level threshold,han-
dlestheinherentvariability of thesceneintensityata
point. Thethresholdusedin changedetectionis the
thesumof thesetwo components.Theactualthresh-
olding hasbothanMMX optimizedandnon-MMX

implementation.

To keepthe subsequentprocessingfast, the thresh-
olding processkeepspointersto the initial and fi-
nal pixels, per row, that areabove threshold.Rows
with nothingabove threshold(usually80%or more
of the image)areskippedin subsequentprocessing.
Becausewe expect thereto be only a small collec-
tionof pixelsabovethreshold,thethresholdingphase
checksthis assumption.If it is violated,it is proba-
bly arapidlighting changeandthesystemtriesafew
heuristicsto compensate.

After thresholding,the systemneedsto find con-
nectedcomponents. Keeping this processfast is
aidedby two techniques.First, only pixelsbetween
eachrow’s initial andfinal above thresholdpixel are
processed.The connectivity codealso hasspecial
casesfor whenthe entireprevious row wasempty.
The second,and more significantspeedup,comes
from areductionin resolution.Thethresholdingpro-
cessalso builds a lower resolutionimageof those
pixelsabove threshold.Thepixelsin theparent(low
resolution)imagemaintaina countof how many of
thechildrenwereabove threshold.Sinceresolution
is reducedby a factorof 4 in eachdirection,thepar-
entimagecontainsvaluesbetween0 and16.

The connectedcomponentphaseis only appliedto
the parentimage. In addition to the speedup,this
alsohastheeffectof filling in many smallgaps.The
gap filling is spatially varying; the maximumdis-
tance“neighbors”variesbetween4 and8 pixels.

After theconnectedcomponentsprocessing,thede-
tectedregionsaresubjectedto areathresholdingto
removenoiseregions.Theareathresholdswhichare
appliedperregion usetheaccumulatedpixel counts
from theparentimage.Thisallows thesystemto de-
tect(andretain)ahumantargetsat50m,i.e.,a2 pix-
els by 8 pixels region in the full resolutionparaim-
age.

After the connectedcomponents,we have a col-
lection of regions that are different from the back-
ground.Thetrackingphaseattemptstoconnectthese
regionsto thosefrom previousframes.Thesimplest,
andmostcommon,aspectof this associationoccurs
whenthecurrentregionsis “on top of” theprevious
region. The systemactuallysolves this part of the
associationwhile it is doing its connectedcompo-
nentslabeling.Thelabelinglooksatboththecurrent
parentimageaswell as the parentimagefrom the
pastframe.Objectsthatareconnectedin space-time
arelabeledwith thesamelabel they hadin thepast
frame.(Segmentationof individualswithin aclosely
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packedgroupis not,currently, beinginvestigated.)

After handling the spatio-temporalconnectedre-
gions,onlyasmallnumberof regionsremain.There-
fore, the systemcanspendconsiderablymoretime
trying to matchup theseregions. It looks to merge
new regions with near-by regions that have strong
temporalassociations.It alsolooks to connectnew
regions with regions that were not in the previous
framebut thathadbeentrackedin earlierframesand
disappeared.Bothof thesemorecomplex matchings
usea mixtureof spatialproximity andfeaturesimi-
laritiesandareamajorissuein ourongoingefforts.

Foreachtrackedobect,thesystemcomputesanddis-
playsvia colorencodingaheuristicconfidencemea-
surethat is basedon many contributing factorsin-
cluding the objectssize, contrast,how long it has
beentracked, and how fast/far it hasmoved. This
providesaneasywayfor usersto crudelyadjusttheir
probability of detectionversusfalse-alarm-rateby
demandingonly higherconfidencetargets.

As part of our VSAM project, and in an effort
to begin evaluationof omnidirectionalimaging for
SUO-SAS,we made3 trips to Ft. Benningto col-
lect omni-directionalimagedata. This datawill be
usedthroughoutthe 1998-1999time frame to de-
velop,tune,andevaluateouromni-directionaltrack-
ing algorithms. Approximately70 hoursof omni-
directionalvideo wascollected.Dataincludesboth
significantamountsof “targets” and empty scenes
for false-alarmevaluation. Atmosphericconditions
includelight rain, partly sunny andwindy to sunny
with light breeze.Limited copiesof dataareavail-
ableuponrequestfrom tboult@eecs.lehigh.edu.

Researchersat the Institute for DefenseAnalysis
have donesomepreliminaryanalysisof the tracker,
as of Aug 1998, over different scenarios.The re-
sultswereapproximately95%detectionpercentages
(rangefrom 100%down to 87%)anda false-alarm-
ratesrangingfrom .15FA permin to 1.7FA permin.
Thescenariosevaluatedincludeda shortindoorseg-
ments,twourban/streetscenes,twodifferentwooded
settings,a town edge(half dirt/sandyandhalf urban)
anda sniperin a grassfield. (Theseevaluationsdid
not includethe theuseof any confidencemeasures,
nor did it allow for incrementallearningor adaptive
feedbackon falsealarms.)

Partof theirfeedbackwasthatourcurrentfalsealarm
rateis too high. A largefractionof our currentfalse
alarmsare small to moderatesized location with
lighting relatedchanges,e.g. small sunpatchesfil-
teringthroughthetreesor shadows. In awidefieldof

view, many of theseappearvery muchlike a person
emerging from occlusion.We arecurrentlyinvesti-
gatingtechniques,in additionto thecurrentadaptive
(supervised)learning,to label theseasinsignificant
eventsor at leastto reducetheir “confidence”with-
out impactingprobability of detectionfor real tar-
gets.Wearealsoaddressinganumberof minoruser
interfaceissues.

A final componentof our ongoing efforts is the
multi-cameracoordinationand a fully networked
system.With this extension,the targetsaretracked
in local sensorprocessingunits (computer/camera
pairs)coordinatedby anoverall controlunit (OCU)
which tracks results, handlestarget hand-off and
doesintegrationof informationin 3D. Target infor-
mationandsignificantvideo clips aredisplayedby
a networked displaycontroller (NDC). The goal is
to have onenetworked computerconnectedto 5-20
paracameraswith all of the“events”beingviewedon
NDC. Oneof thedesignconstraintsin our develop-
mentwastheability of theprotocolto scaleto large
numbersof sensorseachwith a largenumberof tar-
getswhile not saturatingthe network. The design
underwenta numberof iterationsandin the spring
we coordinatedwith CMU on thedesignof thecur-
rent VSAM protocolwhich incorporatedkey ideas
from boththeoriginalLehighandCMU designs.

Our tacker is runningunderLinux usingMMX en-
abledprocessors.The codedescribedhereinruns
at 30fpson a 233 Mhz K6 with 32MB of memory
anda PCI frame-grabber. We have demonstrateda
smallersystembasedon a 166MMX in a Compact-
PCI housing(12x5x5) that tracksat 15fps. (We re
now upgradingthat to a 233MMX in a ruggeden-
closure.) We are also porting the tracker to our
augmentedRemoteReality“wearable”(alow-power
133MMX basedsystem),see[Boult-1998].
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