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Abstract— Visual processing in humans is, without a doubt,
far superior that that in machines, especially when the end
goal is object or face recognition. Neural results from visual
object and face recognition in humans provide an excellent
model for developing better techniques in machine vision. In
this study, we present a particular neural result pertaining to
the use of low spatial frequency (LSF) imagery to facilitate
recognition of high spatial frequency (HSF) representations of
faces and objects and apply it first as a general technique for
the classification problem and second as a high-performance
recognition method to deal with face recognition on blurry
imagery. We demonstrate significant improvement over baseline
results using a directly comparable published algorithm. We
also discuss the problem and our technique for solving it terms
of a mutually beneficial collaboration between the fields of
computer vision and neuroscience.

I. INTRODUCTION

Human beings are very good decision makers. We make
decisions every day, from what we are going to eat for
breakfast to what time we are going to leave work. We
frequently also make decisions when we don’t realize it,
for instance when recognizing an object or a face. In fact,
humans have to make these types of decisions so frequently
that our brains have specialized to be able to make these
decisions and make them well. Occasionally, we may mis-
recognize an acquaintance we haven’t seen in years, but on
the whole, our brains are very effective at solving the face
recognition problem.

In fact, most circumstances show that humans are the clear
victor in the face recognition challenge over computer vision
methods. [21] gives a thorough summary of many of the
unconstrained face recognition scenarios in which humans
perform incredibly well while machines are left in the dust.
In particular, the present work will focus on one specific
instance for illustration purposes: the effects of motion blur,
which do not present a serious issue for humans but are
crippling to machine vision systems.

It is unsurprising that blurry imagery makes the task of
face recognition more difficult and thus is an interesting
problem in computer vision. However, it is also unsurprising
that humans seem to be considerably better at it; humans
are constantly in motion and seeing at distance, yet are still
able to recognize faces better than computers can in these
unconstrained circumstances.
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It only seems natural that a system so elegantly tuned to
the problem of decision making and, in particular, object and
face recognition, should become a model for implementing
a similar facility in machines. Indeed, since the late 1950s,
the brain’s physiological structure and function formed the
(albeit simple and primitive) model for the development of
the perceptron [19] (described in detail in [20]) and its suc-
cessor, the artificial neural network. While neural networks
gained popularity, especially among the pattern recognition
community [4], newer models such as the Support Vector
Machine (SVM) [6] have begun to effectively replace the
neural network.

This study attempts to find a balance between the decision-
making model of the brain in the context of face recognition
while still making use of the efficient and more practical
SVM machine learning technique. We apply a result from the
human visual processing community to a similar problem in
machine vision, using the system of processing in the human
brain as a model to conduct the recognition in multiple
phases. While biometric algorithmic fusion is not a new
concept in biometrics, our contribution is in demonstrat-
ing the applications and theoretical underpinnings of such
recognition system in terms of the neural model presented
below, demonstrating significant improvement over baseline
blur results.

This study is demonstrated as follows: in Section I-A, we
discuss the relevant neurological research providing inspira-
tion for our proposed decision method and face recognition
process. In Section II we discuss how this methodology
can be applied to the classification problem as defined in
Machine Learning and, in particular, the Support Vector
Machine. We also discuss the specific problem of face
recognition and, in Section III, describe experiments used
to test our methodology in this domain and their results.
We provide a brief discussion of the significance and future
potential in Section IV.

A. Top-down Facilitation of Visual Processing in humans
On the neuroscience side, visual processing has long been

a subject of study, beginning with the accidental discovery
by Hubel and Wiesel in 1959 [11] of neurons sensitive
to lines at varying orientations in the V1 area (primary
visual cortex) of the cat. Since then, research has progressed
beyond the bottom-up approach of studying the inputs to V1,
the processing done in its relatively localized brain regions,
and successively higher visual processing areas ultimately
leading to the Medial-temporal Lobe (MTL) as a more
holistic view has gained support.

In fact, an empirical study by Bar et al. [2] proposes
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Fig. 1. Bar et. al. [1] define two pathways from optic nerve to MTL. One
processes a high spatial frequency version of a visual stimulus, while the
other processes low spatial frequencies 90ms prior.

an alternate pathway from optic nerve to MTL by way of
the orbito-frontal cortex (OFC) and bypassing V1 that is
used specifically for visual recognition tasks. This pathway,
detailed further in [1], operates on low spatial frequency
(LSF; what most people would describe as “blurry” or “low-
resolution”) images approximately 90 milliseconds before
the full visual stimulus (high spatial frequency or HSF
image) is processed by MTL (130 ms after stimulus onset).
A more precise pathway is proposed in [12], both explaining
and lending credence to the idea that the early stage of
processing operates on what is essentially a low-resolution
image. [17] describes this hypothesis from a higher-level per-
spective: OFC serves to integrate the low spatial frequency
information with signals from other parts of the higher-
level brain, most notably our memories, to narrow down the
possible identities of the visual stimulus to a specific subset
of objects with which we are familiar.

We can interpret these findings in a more precise way
that is more suitable to generalization to the machine vision
analogue: In machine vision problems, the role of “memory”
is taken over by a machine learning classification model that
is trained on samples of images much the way a human
observes faces over the course of his or her lifetime. The
LSF image is used to choose a set of candidate identities for
an unknown input image from higher metacognitive memory
in the OFC that are used to seed the remainder of the
recognition process and arrive at a single identity. In this
way, a limited amount of data can be used to quickly reduce
the number of possible identities prior to a final recognition
phase using the full amount of data.

II. MODEL IN TERMS OF MACHINE LEARNING

Recently, conclusions from neuroscience have pervaded,
not only the way in which features in a machine learning
problem are classified, but also the way in which features
to be classified are generated. Computer vision has begun
to use spectral analyses of the primary visual cortex [8] in
the context of object and face recognition problems [16] to
generate particularly discriminative feature vectors for use
with Support Vector Machines. We can extend this model in
terms of the system described above.

If we look deeper into the neural mechanisms that allow

for this heightened ability to perform face recognition, as
reviewed in section I-A, we see that they are not as simple
as most face classification problems make them out to be.
In particular, we see that the decision is made in multiple
stages. First, raw data that has undergone a minimum of
preprocessing is used to prime the decision mechanisms by
reducing the decision space. Enough information is obtained
from this rough approximation to determine that a human
face is not that of a dog and a face with facial hair is that
of a mature male.

Given this reduced decision space, the processed informa-
tion can then be used to distinguish between the individual
classes that have not been discarded by the rough decision
phase. This approach can further be generalized to allow for
multiple stages of processing and even (as may be the case
in the human brain) to use different classification methods
trained on different sets of features for each stage in the
decision. This study demonstrates the latter approach, using
one model to classify LSF images and a second to classify
the HSF original image.

A. Support Vector Machines
As proposed in [6], the Support Vector Machine is a

mathematical model of machine learning that operates by
learning a function to map feature vectors of dimension
n into an m-dimensional space, where m > n, and a
hyperplane in the m-dimensional space to separate examples
of a positive class C+ from those of a negative class C−. A
classifier thus generated can then be generalized to solve a
k-class problem by taking k classifiers, each machine Mi of
which decides the class Ci. This is referenced in the Machine
Learning literature as one-versus-rest.

During the training phase, all component SVMs in the
multiclass SVM are trained simultaneously, depending on
whether or not the specific piece of training data (we
will use the term gallery vector for the remainder of the
paper) represents a positive instance of that class or not.
Thus, during classification of test data (probe vector), the
immediate result is an array D, of size k, of marginal
distances, each di of which represents the distance from
the probe vector to the region in m-dimensional space
representing class Ci. As such, lower numbers indicate
increased certainty that the probe is a member of class Ci

and the class corresponding to the lowest marginal distance
is the ultimate output of the classification. By negating these
marginal distances, it is trivial to show the equivalence of
these distances to scores expected in the general machine
learning classification problem.

Further details on the definition, structure, and operation
of support vector machines are documented in [7].

B. Problem Definition
In a traditional face recognition scenario, the problem may

be defined as follows: given a set of subjects (classes) C and
a gallery G such that, for for every Ci ∈ C there exists a
gj ∈ G, where gj is a member of class Ci, classify an
unknown probe image, p, as a member of one and only one
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Fig. 2. Flowchart of our Machine Learning implementation of top-down facilitation. The training process begins with several input images of each subject
and trains two SVMs – one on a downscaled version of the image and one on the full-sized image. The full model (rectangle at right) is then used for
testing as demonstrated by the rectangle on the bottom. A downscaled image is classified using the LSF SVM and the marginal distances are used to seed
the classification process of the HSF SVM on the original input image.

class in C. Usually, this is done by mapping each gj and
p, all of which are of the same type of datum of arbitrary,
but consistent, dimension, to a feacture vector v of arbitrary,
but consistent, dimension. The problem is then reduced to
learning a function of the form:

f(v) : v→ Ci ∈ C (1)

However, this scenario can be generalized to allow for
multistage decisions. In order to perform this operation, we
modify Equation 1 slightly:

f (n)(v(n), C(n)) : v(n) → C(n+1) ⊂ C(n) (2)

In Equation 2, C(n) represents a subset of C, where
C(0) = C and C(N) contains only one element, the result
of classification. v(n) represents a different feature vector
for each stage of the decision, presumably representing
increased resolution or preprocessing (ultimately represnet-
ing a larger amount of data per input image), similar to
the proposed progression in the human visual recognition
pathways. This function, once learned, is then solved for all
values of n ∈ {0, . . . , N − 1}.

In the specific case of blurred imagery, as demonstrated
here, we choose N = 2 and define v(0) to be the features of
an image scaled down to one-sixth of its original size (and,
thus, both digital and optical resolution representing 1

36 the
original amount of data) and v(1) to be the features of the
image either as provided to the recognition core (with some
form of motion blur) or after it has been preprocessed (to
compensate for or remove motion blur).

The underlying model in our experimental setup is a
multiclass Support Vector Machine both because it is easy
to separate into parts by component class and because of
its current popularity. In order to implement the multi-
stage decision component, we actually train two multiclass

SVMs. The first is trained on LSF imagery generateed by
downsampling each of the original gallery images. This
will provide a rough set of potential classes during the
classification phase. It is worthwhile to note that, despite
the counterintuitive nature of using lower-resolution imagery
to refine the recognition task and boost overall recognition
accuracy, Beveridge et al. [3] have demonstrated that low-
quality (out-of-focus) imagery may actually lead to better
recognition rates in certain situations.

The second SVM is trained on the raw gallery images at
full size. The component SVMs thus trained are then selected
based on the marginal distances generated by classifying
an LSF version of a probe image with the first SVM.
These selected SVMs are assembled into a new multiclass
SVM with a significantly reduced decision space. To choose
the members of C(1) (represented by this re-assembled
SVM), we select the classifiers from the SVM modeling
f (0) that produce the top k scores, varying k between sets
of experiments.

We choose values of k with the intent of excluding outliers
that could potentially confuse the second classification as a
byproduct of the blurred original imagery. Thus, we have
chosen values of 10, 30, 60, and 100. Any more than
100 classes does not provide a significant reduction in the
dimension of the decision space, while any fewer than
10 does not retain enough of the candidate classes to be
meaningful (LSF images of objects, especially of faces,
tend to look the same across a significant cross-section of
classes, but also provide enough variation from an even more
significant portion of incorrect classes to provide meaningful
top-down information). The chosen values of k do not
represent consistent spacing along a range because results
at other values do not represent a significant deviation from
the trends shown by these choices of values.
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Fig. 3. A member of the original FERET set, prior to preprocessing and
blurring

Once a reduced set of potential classes is obtained, we
construct a feature vector either from the original image
or from an image obtained as a result of deblurring using
techniques such as those described in [13], [14], [9], which
is then used as input to an SVM constructed of those
component SVMs (modeling f (1)) correspondng to classes
in C(1) to determine the final classification. This pipeline is
shown graphically in figure 2.

III. EXPERIMENTS AND RESULTS

The program used as a framework for the feature genera-
tion and classification is a fork of the Python code published
with [16] using Gabor responses as features for a multiclass
SVM. The underlying SVM implementation is a SWIG
interface from python to the libsvm library encapsulated in
the Python library PyML.

We demonstrate results for all stages of the current study
on two well-known public datasets. The FERET (Face
Recognition Technology) [15] set was chosen due to its
relatively constrained nature; all images used were frontal
and under fairly consistent lighting conditions. This allows
us to demonstrate the substantial effect of blur on recognition
rates while also providing a significant margin within which
to demonstrate improvement as a result of our methodology.

Due to the constraints of our SVM-based classification
method, a gallery of more than a single image was required.
To reduce the potential for an outlier to have potentially
disastrous effects on the training of the SVM while still
maintaining a relatively small gallery size, we used three
gallery images per subject. As such, it was necessary to
deviate from the published protocol for FERET.

The following protocol was designed and used for testing:
subjects for whom the data set contained fewer than four

(a) 5 pixels (b) 10 pixels

(c) 15 pixels (d) 20 pixels

Fig. 4. A member of the FERET set under various motion blur extents.
Note that the angle of blur was randomized during the processing phase.

images were discarded. For each of the remaining subjects,
a set of four images were chosen by an alphabetic sort on the
names given in the original data set. Of these four images,
the first three comprised a subject’s gallery; the last was used
as a probe image. Thise subset has been dubbed FERET240.

Note that this protocol deviates slightly from the FERET
protocol in that the standard FERET “fa” subset is generally
intended for gallery, while our protocol generally used “fa,”
“fb,” and “fc” as gallery and some of the more difficult
FERET images as probes. This breakdown is merely co-
incidence; the alphabetic sort as described above make the
distinction between probe and gallery largely arbitrary.

All images in the resulting dataset were geometrically
normalized, prior to processing, using the CSU Face Identifi-
cation Evaluation System [5]. Subsequently, the “probe” sub-
set of the FERET240 set was processed using MATLAB’s
fspecial function to simulate motion blur at various
specific blur lengths and random angles to create four new
datasets corresponding to 5, 10, 15, and 20 pixel blur.

To establish baseline results on the datasets used in this
study, a version of the code base published with [16] was
modified only to allow control over which images were used
as gallery and probe. The results of the otherwise-unchanged
recognition core on our FERET240 dataset are summarized
in Table I. As shown in this table, blur greater than 10 pixels
is sufficient to reduce baseline recognition by a statistically
significant percentage. Figure 4 shows an image from the
FERET set at various blurs.
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Blur None 5 pixels 10 pixels 15 pixels 20 pixels
Rank 1 97.50 95.00 75.00 39.58 16.67

TABLE I
BASELINE RECOGNITION RESULTS ON ALL VARATIONS OF FERET240

k None 05px 10px 15px 20px
10 92.00 95.42 87.08 71.67 57.08
30 96.00 95.42 84.58 62.08 42.50
60 96.00 95.42 82.92 53.33 34.58
100 96.00 94.58 82.08 49.17 31.25

TABLE II
RECOGNITION RESULTS ON FERET240 USING THE PROPOSED SYSTEM

USING DIFFERENT VALUES OF k

A. Multiphase recognition
We have implemented the process described in Section

II-B in a high-level protoyping language, based on the code
base provided with [16] and following the experimental
protocol described in Section III for each of the four values
of k noted in Section II-B.

During the recognition phase of each experiment, each
probe image was first classified using its one-sixth resolution
version, giving a set of marginal distances corresponding
to the distance in multi-dimensional space from the blurred
probe’s feature vector and each component SVM. The class
labels from the SVMs most likely to correspond to the
correct class (as determined by the appropriate threshold)
were used to choose the constituent SVMs from the second
multiclass SVM, which then classified the original input
image. The result of this classification was used as the final
result of classification, regardless of the scores generated
from the initial classification.

Table II summarizes the results on the FERET240 set. It
is interesting to note that the classes whose models do not
provide a score in the top 10 during the first classification
phase seem only to confuse the second classification phase,
which suggests that reducing the digital and optical reso-
lution of a degraded image may provide a more accurate
classification than attempting to compare a degraded probe
against clean gallery images. While these results represent
marked improvement over the baseline blurred recognition
results, other attempts to solve the blur problem such as [10]
demonstrates an equivalent or better performance increase
on the same data via the simple procedure of deblurring and
recognizing using a single unmodified SVM.

However, this discrepancy can be made up by deblurring
the original input probe using a Wiener deconvolution with
a point spread function generated from the blur parameters
as described in [10]. Since this study is not on deblurring
methods, we simply use the ground truth blur parameters
obtained when generating the datasets. The rank 1 recog-
nition results using deblurring with both a single-phase
SVM (1PS) and our multi-phase SVM (MSVM; k = 30)
are summarized in Table III. We choose k = 30 because
retaining 30 classes provided better results than retaining
only 10 classes for the second phase. This is due to the
increase in similarity of a deblurred image to its respective
gallery images, which decreases the extent to which it

Fig. 5. Cumulative Match Curve for the 10-pixel blur case. This demon-
strates how the method described in this paper forces the vast majority of its
matches closer to Rank 1, whereas use of a single SVM creates a smoother
curve, losing accuracy fairly consistently esp. in ranks 4 through 10. Note
that the y-axis ranges from .7 to 1.0.

05px 10px 15px 20px
MSVM 95.42 95.83 95.42 94.17
1PS 97.50 95.83 94.58 92.50

TABLE III
RECOGNITION RESULTS ON USING DEBLURRED IMAGES AS INPUT TO A

STANDARD MULTI-CLASS SVM (1PS) AND TO THE SECOND PHASE OF A

MULTI-PHASE SVM (MSVM)

exhibits similarity to incorrect classes.
This means that we can loosen the restrictions on the

number of classes we use to seed the second phase without
having to worry about introducing classes that will only
serve to confuse the recognition process. In fact, it allows
the correct classes that do not fall within the top 10 scores
(but do fall within the top 30 scores) to be counted and
used to seed the second phase of classification. Thus, the
increase in recognition between the case with no deblurring
and the case with deblurring is due to both the deblurring and
the reduction in the number of correct classes accidentally
eliminated in an effort to reduce confusion in the second
phase.

The results of all four recognition methods presented in
this paper are shown in Figure 5 for a single blur length.
This shows how the use of the multi-phase support vector
machine forces its matches closer to rank 1, whereas a single
SVM exhibits a smoother curve, but suffers from loss of
overall accuracy due to the fairly consistent slope especially
between ranks 4 and 10.

IV. CONCLUSION

In this study, we have demonstrated that it is possible
to model a machine vision system for the face recogni-
tion problem after a simplified model of multiple brain
pathways through a form of biometric algorithmic fusion.
We have shown that without performing computationally-
intensive calculations to determine blur parameters from an
image, it is still possible to achieve substantial increases
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over baseline recognition scores on blurred imagery. We
have also demonstrated that it is possible to reclaim even
more of the lost performance by also performing deblurring,
demonstrating that these results exceed those obtained from
deblurring and using a single recognition model.

While the method proposed here bears certain similarities
to so-called ”multi-pass” recognition methods, academic
literature on the subject is surprisingly slim. It is apparent
that ”multi-pass” techniques are being used in some of the
leading commercial face recognition algorithms, yet formal
discussion of their benefits, strengths, weaknesses, and past
and present development is limited. This study attempts to
bring these concepts into the realm of formal academic
research by showing their high applicability to, at the very
least, a specific class of unconstrained face recognition
problem.

This work also provides a potential alternative to modify-
ing a large set of gallery images based on certain properties
of each input probe image. For example, [18] demonstrates
the drastic effect of inaccurate eye localization in face
recognition scenarios. One way to approach this is to perturb
the eye coordinates in the gallery, which is time-consuming
and expensive. Using the system proposed in this study,
however, the eye localization errors would be minimized or
eliminated on an LSF version of an input image, providing
a similar effect on recognition rates as those on motion
blur studied here. We leave specific experimentation in this
situation to future work.

Future work will also entail exploring other methods for
using the result of a prior classification to seed a later one
that may more closely reflect continuing research into the
neural underpinnings of top-down facilitation. In addition,
the technique proposed in this study may find applications
in other unconstrained machine vision problems, such as
pose, expression, changes in faces over time, and other
such conditions that would not heavily impact a low spatial
frequency image.

Perhaps more importantly, we have shown that, while
the underlying components used in a scenario such as the
motion blur problem may not necessarily reflect the neural
systems they simulate, they can be combined in a way
that does reflect the higher-level findings from the field of
neuroscience. Brain-inspired models of computer vision are,
like all models, simplifications of the real thing. Due to
the extreme complexity of the brain, they are even more
oversimplified than the average model. For instance, there is
considerably more processing between retina and primary
visual cortex than a Gabor filter can describe and there
is even more processing after that stage before the signals
reach MTL and can be thought to represent “recognition.”
However, the hope is that, as we increase the extent to
which our models of machine vision mirror the processes
involved in recognition in the human brain, the accuracy
of recognition in unconstrained environments will increase
drastically. This study represents another step in the progress
of the field of computer vision as it recognizes the benefits
of close collaboration with the fields of both computational

and biological neuroscience.
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