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Abstract

Autonomouideosurveillanceand monitoringof humansubjectdn videohasa rich history Many
deployedsystemsare able to reliably track humanmotionin indoor and contmlled outdoor erviron-
ments,e.g. parking lots and university campuses A challengingdomainof vital military importance
is the surveillanceof non-coopeative and camouflgedtargetswithin cluttered outdoorsettings.These
situationsrequire bothsensitivityanda verywidefield of view andtherefore are a natural applicationof
omni-directionalvideo.

Fundamentallytargetfindingis a change detectiorproblem.Detectionof camouflgedandadvesar
ial targetsimpliesthe needfor extremesensitivity Unfortunately blind change detectionin woodsand
fieldsmayleadto a high fraction of falsealarms,sincenatural scenemotionand lighting changespro-
ducehighly dynamicscenesNaturally, this desie for high sensitivityleadsto a directtradeof between
missdetectionandfalsealarms.

This paperdiscusseshe current state-of-the-arin video-basedarget detection,includingan anal-
ysis of badkground adaptationtechniques. The primary focusof the paperis the Lehigh Omnidirec-
tional Tracking Systen{LOT S)andits componentsThisincludesadaptivemulti-badkgroundmodeling
guasi-connectedomponentga novel appmoac to spatio-tempcel grouping),badkgroundsubtraction
analysesandan overall systenevaluation.

1 Intr oduction

Therehave beenmary visual suneillanceand tracking systemsdevelopedwith a variety of software
andhardwarearchitecturesWe first present brief introductionto visualsuneillancesystemsandtheir
overall systemarchitecture. The systemarchitectureoverview will provide a framework in which to
discussprior work andthe domainconstraints. Thus citationsto and discussion®f relatedwork are
omittedin this secctionbut but canbe found in the section1.3 and throughoutthe remainderof the
paper This sectionalsodefinessomeof thetermsandbasicconceptaisedin theremaindeof thepaper
Following the fundamentalswe discusdifficultiesin sectionl.2 andthenprovide an overview of the
remaindeinf thepaperin sectionl.3. Thosealreadyfamiliar with thefield maywishto skipto thepaper
overview.

*This work supported in part by DARPA VSAM program and ONR MURI program. Contact author
tboult@eecs.lehigh.edu
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1.1 Visual Surveillance Fundamentals

The visual suneillance problempertainsto the the use of imaging sensordo monitor the actwvity of
targetsin a scene.For example,monitoringhumanactuity in office environmentsvia CCTV cameras,
performingsuneillanceon vehiclesat night with long-wave infraredsensorsor trackingsoldiersin the
woodsusingomnidirectionalideoareall visualsurweillanceproblems.

Acquisition —{ Detection H Grouping H Tracking }
[Sensor controHModel updat%—ﬂclassification*}—[ Filtering }

Figurel: Logicaldecompositiormndcontrolflow of avisual suneillanceandtrackingsystem.

A simpleview of the visual sureillanceproblemhastwo major subproblemstamgetsmustfirst be
detectedandthentracked Fromanarchitecturgpoint of view, mary visualsureillancesystemdurther
decomposé¢he problemresultingin upto eightmajor stages:acquisition, detection, grouping, track-
ing, filtering, classification,updating models,andsensorcontrol. A functionaldecompositiorof a
systencanbeseenn Figurel. In somesystemsafew of thesestagesnaybe performedsimultaneously
or maybeomitted(thosemarkedwith *' s), but for illustrative purposeswe will considerachstagesep-
arately We will briefly review thesdundamentastepsof visualsurweillancein thecontext of arefeence
subtmaction paradigm.Notethatthis is a very simplified view of the systemandin the remaindeiof the
paper difficultiesandlimitationsinherentin this simpleview will bediscusse@ndovercome.

Undetectedargetscannotbetracked. Thereforethefirst stepan avisualsuneillancesystemareac-
quisitionof animageanddetection(referredto in this paperandotherliterature,asthe changedetection
phase).ThesimplestdetectobasednthereferencesubtractiormodelusesasinglereferencemageB,
which is alsoknown asa backgroundmage. The referencamageis usedto captureinformationthat
is “unimportant” (static)in a scene.The chief advantageof areferencenodelingapproactis thatthere
is no needto explicitly modeleitherthe geometryor photometryof a scene.This not only significantly
simplifiesthe systems$ operationput allows it to operaten awide variety of ervironmentswithoutthe
needfor comple calibrationroutines.

Referencenodelsoperateon avery simpleprinciple. Supposeve pointa cameraat a sceneve wish
to monitorandassumeno targetsare currentlypopulatingthe scene.If we save this capturedmageas
our referencemage B, thenary changein this scenecan be detectedoy simply performinga pixel-
by-pixel comparisorbetweenour referenceémage B andary new incomingimage. Supposeve have
a new imageof our scenel that containsa target of interest. Then,we constructa differenceimage,
A = |B - I|, whereeachpixel of A is theabsoluteralueof thedifferencebetweercorrespondingixels
of B andI. Thereforeeachpixel of A thatis greaterthansomenoise-basethresholdr represents
pixelthathaschangediueto the presencef atarget. In this paperandin muchof thevisualsuneillance
literature,suchpixelsarecalledtarget pixels Thesetargetpixelsarethe outputof the detectionphase.
Naturally, thereis a sensitvity tradeof correspondingo differentchoicesof 7. It mustbe high enough
to ignorenoise,but low enoughto detecttargets. Therearetwo primary approachetakento reference
modeling. One adaptsthe referenceémageover time by blendinginformation and statisticsextracted
from the mary images. The othermethodusesthe two mostrecentframesfor building the difference
imageA. Bothtechniquedave their own advantagesnddisadwantages.

Let usassumeur simpletracker hascompletedhe detectionstage andhasmovedinto thegrouping
stage.lt is the goal of this stageto assigna labelto eachpotentialtarget pixel. Ideally, all pixelsthat
belongto the samephysicaltargetwill sharethe sameabel. Themostbasicform of groupingis simple
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connecteg@omponents— theassignmenof thesamdabelto adjacent pixels. Becausehis stagds early
in the systemtheseuniformly labeledandwell-connectegixel regionsarenot necessarilgleemedrue
targets. They are often referredto with the lessdescriptve term blobs Somesystems‘clean” these
blobshby performingbinary morphology This helpseliminatevery smallregions, which areassumed
to be noise,and connectdogetherregionswith small separationsUnfortunatelyit alsodeletessmall
targets.

In thetradkingphasegachblobis associate@ith zeroor moreblobscomputedrom previousframes.
Eachsetof spatio-temporafjroupingsor tracks, describes target’s behaior andpropertiesovertime.
The mostrudimentaryupdateconsistsof associatindglobsthateitheroverlapspatiallywith blobsfrom
previousframes,or have centroidsthatarewithin someproximity thresholdof eachother Ideally, each
track correspondgo a single moving tamet asit movesthrougha scene,evenif the taget becomes
temporarilyoccluded(partially or fully).

In the filtering stage,additionaltestingis performedon the target regionsto insurethat they are
targets. Processinganvary from the simplistic deletionof targetswithout a minimal numberof pixels
ontarget,to themorecomplex methoddor detectingolobsthatresultfrom reflectionsshadaevs, or other
illumination changesFor example, it is commonfor humantrackersto assumehattheir targetswill be
upright. Suchtrackersmay eliminateblobsthatdo notfit this description.

Many high-level suneillancesystemsaugmentheir trackerswith target recognitionroutines. This
optional classificationstageusually follows or is concurrentwith filtering. It is optionalin the sense
thatmary visualtrackers,including LOTS, do not have this component.Naturally, the granularityand
type of classificatiorvary acrosdifferentsystems.For example,somesystemsanaytry to distinguish
betweernvehicleandnon-wehicletargets.Othersmayattemptto identify a particulartarget's identity, or
simplytry to decideif thetargethaspreviously beentracked.

In the modelupdatestage the systemupdatests internalmodelsto incorporateinformationgained
in the new frame. This mightincludeadjustingvariousthresholdsadjustingthe backgroundnodel,or
updatingotherinternal systemvariables. Sincein mary systemsherecan be several parameterper
pixel, thereareoftenaverylargenumberof parameterso consider Creatinga systenthatbothproperly
andrapidly self-adaptdts internalmodelis perhapghelargestchallengdacedby thevisualsuneillance
community

Finally, asaresultof amodelupdate a systemmay decideto adapttheincomingvideo streamin the
sensorcontmol stage. Simpleupdatesnay be, for instance simply changingthe brightnessor contrast
of thevideo. An active vision systemmight cuea pan-tilt-zoomcamerasothatit mayfollow atracked
target.

1.2 Difficulties

We now briefly touchuponsomeof thedifficultiesfacedby theabove trackerandeventhe moststate-of-
the-arttrackingsystems.The fundamentabifficulty of changedetectionnaturally lies in the factthat
scenesevenin controlledervironments are undegoing continualchange.While adaptingto complex

lighting changess trivial for the humanvisual systemiit is a very challengingproblemfor computer
vision system.Changesn the ervironmentslighting, targetshadavs, andsensoiartifactssuchasauto-
gain correctioncanchangethe overall appearancef seemingly‘static” scenes.The measuredmages
changesignificantly the systemmustthen decideit is not an interestingchange. In lesscontrolled
ervironmentsputdoorsn particular scenesremuchmoredynamicandthereforegnoringinsignificant
changes$s muchmoredifficult. Naturalmotion,suchasmoving cloudsandtreebranchegoseadditional
difficulties.

1The two mostcommonadjaceng measuresirethe four-connectednesandthe eight-connectednesin four-connectedness,
a particularpixel is consideredadjacentonly to pixels either directly abore, below, to the left or to the right of it. In eight-
connectednessg]l surroundingpixels sharingeitheranedgeor a cornerwith a particularpixel areconsidereaieighbors.
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Whentargetsare actively trying to avoid detection,systemsarerequiredto constantlywatchareas
thatafford trespassengasonableoverandconcealmentBy definition,suchareashave limited distance
visibility with significantocclusionand clutter Furthermoretargetsof interestgenerallymove in a
stop-and-ganannerand attemptto concealthemseleswithin the cover, using camouflagdo further
reducetheir visibility. The combinedresultof limited distancevisibility andsmall target/background
differentiationsererely limits the usefulnes®f stop-and-starapproachesisingpan-tilt-zoomcameras.
Becausa misseddetectiorncanbe, literally, deadly a systemdevel approachs required.Theproperties
of eachsystenmcomponenmustbecarefullyconsideredoptimized andintegrated— from sensooptics,
to operatingsystemcharacteristicsto the userinterface(Ul). As the paperwill shav, thesesituations
call for avery sensitve systemwith a very wide field of view —andhencethey area naturalapplication
for omni-directionalvideo surnweillanceandmonitoring.

All systemghat build the referencemodel by temporalblendinghave the problemthat targetsthat
arestationaryfor long periodsof time eventuallywill becomepartof thereference Whenthesetargets
move on, a setof tamgetpixelscausedy theabsencef thetargetsgeneratevhatareoftencalledghosts
For example ,carscommonlygenerataghosttargetsin parkinglot scenarios.

Whentargetsaresuficiently distant,they generaténdependenblobs. However, wheneithertargets
or their shadevs causeocclusion splitting blobsinto independentargets,or regrouping,becomesnore
difficult. Take thesimpleexampleof anoffice ervironmentin whichtwo peopleapproacteachotherand
shale hands.Two independenblobsmaybecomeone,andthenseparat@again.For asystento properly
keepablob pertarget, higherlevel reasoningnustsomeha beincorporatednto the system.Tracking
alsobecomesnoredifficult astargetblobscollide anddecompoself blobsmeigeandlatersplit, it can
bedifficult to determineo which original trackeachblob belongs.

1.3 Paper Overview
This paperdiscusseshe issuesrelatedin taking the simplereferencemodelbasedapproacho visual
sunweillancesystemsutof thelab andinto thewoods— developinga state-of-the-arsystencapableof
detectingandtrackingsmall,low contrastandcamouflagedargetsin complec outdoorsettings.For this
domain,the detectionphaseis crucial; if targetsare not detectedrackingis difficult if notimpossible.
Detectionis alsoan areawherethe domainconstraintanake this moredifficult thanthe situationscon-
sideredin prior work. For example,Figure 2 shaovs a scenewith a sniperin the grass(detectedegion
magnified).Obviously, the camouflages quite good,but a sensitve motionvision basedrackingalgo-
rithmwith carefulbackgroundlifferencingevealsthesniperslocation. Frame-to-framenotionis small
— agoodsnipermay crawl atunderatenthof a meterper minuteandbe motionlessfor minutesat a
time. A videoof this sniperbeingtrackedby theLehighOmni-directionallrackingSystem(LOTS)[1, 2]
canbefoundat http://www.eecs.lehigh.edu/"tboult/ TRACK

The next sectionof the paperreviews the domainconstraintand analyzeshow existing techniques
addressheseconstraintsBecause&amouflagedargetsin outdoorscenesrevery challengingwe shall
seethat much of the state-of-the-artioesnot directly apply. Section3 discussedechniquedor the
changedetectionsubsystems.This is followed by a sectiondiscussinggroupingand presentgjuasi-
connectedomponent$QCC)whichis anovel approactof performingspatio-temporajrouping.QCC
combinesgapfilling, thresholding-with-hysteresend spatio-temporategion meming/cleaning.Then
in Section5, we briefly review thecomponentshatarerequiredfor a successfuV/ideo Surweillanceand
Monitoring (VSAM) systemto operatan thewoods.Thisincludestracking,targetgeolocationnetwork
communicationand userinterfaceissues. Becauseof the camouflageand occlusionof this domain,
LOTS doesnotaddressargetidentification/classificatiorandthereforeit is notdiscussedh this paper

While the problemof trackingcamouflagedargetsis, hopefully, somethingonly a few peoplewill
ever have to consideythe challengeghis problempresentsequiresubstantiabdvancesn suneillance
systemsensitvity thatcanbe appliedin mary otherdomains.It is interestingto notethat Foresti,[3],
while researchingsuneillance systemsfor “varying badly illuminated outdoorernvironments”devel-
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Figure 2: Tracking a sniper moving in the grass — the two boxes approximately cover his upper
and lower body (right to left). In a single frame, as is shown here, the sniper is virtually invisible,
even though he is only between 3m-5m away.

opedmary technigquesimilar to thosepresentedherein.While therearemary differencesn the detail,

Forestiindependenthandconcurrentlyfoundthatsuneillancein challengingdomainsrequireschange
detectioncombiningthresholding-with-hysteresisith a two-level spatialanalysis.As we describeour

systemwe will oftencomebackto compareour approactwith thatof Foresti.

After reviewing theoverall systemwe thenreview our effortsin theanalysisof thesetypesof systems
and how one candeterminethe propersystemparameters.In particular in Section6 we presentan
erroranalysisat the pixel andregion level that quantifiessomeof the advantage®f QCC. Theanalysis
includesrelatingthe pixel-level errorsto region-level errorsfor both the single-lesel thresholdandthe
thresholding-with-hysteresepproach.We endwith a summaryof an externalevaluationof the LOTS
systenmperformedby thelnstitutefor DefenseAnalysisandthe ongoingapplications/gperimentswvithin
military settings.

Theprimary contributionsof thisresearctarethe developmenbf the QCCapproactio grouping,the
analysisof errorsandthe approacho parametesetting.

2 Background and Constraints

Theprimarygoalof this papelis to discusshe problemof detectingandtrackingpotentiallyadwersarial
targetsin a perimetersecuritysetting,i.e. outdooroperationin moderateto high cover areas.The high
clutter and camouflagenakesimagefeaturesdifficult to use. We have found only a few otherpapers
within the vision andimageprocessingcommunitythataddressargetsin camouflagef4], andmodels
of camouflage[5]. While [4] addressesletectionof peoplein camouflagejt doesso by finding a
particularsimple classof “smooth corvex intensity features”that requiresthousandf pixels on the
target’s non-camouflagefiace. The otherwork, e.g.[5], developscomputationamodelsof the signal
strengththat exists in animageof camouflagedargets,anddoesnot addreshow to detecttargetsin
camouflage.
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This domainof applicationlow contrastor camouflageargetsin high clutter, significantlyrestricts
thetechniqueshatcanbeapplied.Someof the constraintsandtheirimplicationsincludethefollowing.

e Outdoorlighting is naturally and continually varying. The systemmustbe robust enoughnot to
generatdalsedetectionsausedy sunlightfilteredthroughtreesandintermittentcloud cover.

e Treesprushandcloudsall move. While maintainingsensitvity, the systemmustincludealgorithms
to helpdistinguishthese'insignificant” motionsfrom realtargetmotions.

¢ Tamgetsneedo bedetectedjuickly, whenthey arestill very smallanddistant,e.g.aboutl0-20pixels
ontargetor lessthanonehundredttof a percentunder0.01%) of theimage.

o Tagetsusecamouflageo blendin, sothesystemmustbevery sensitve. Sincepartsof thetargetwill
oftenmatchthebackgroundfragmentations expected Largeamountf occlusioncauseadditional
fragmentation.

o Many targetswill move slowly. Imagevelocitiesof under0.1 pixelsperframearetypical with some
targetsan orderof magnitudeslover. Sometargetswill try very hardto blendinto the motion of
thetrees/brushTherefore frame-to-framalifferencingis of limited value. Furthermorepne must
insurethattemporakdaptiorschemeslo not causeheblendingof slow targetsinto thebackground.

¢ Occlusionespeciallyin woodedareass very significant;anaveragevisibility distancen moderate
woodsis under50 meters. The directionsof targets’ motion are only slightly constrainecandthe
entireareamustbewatched Combinedthesesuggestheneedfor avery wide field of view (FOV).

e Tamgetsconsisiprimarily of humansandoccasionallyehicles.Targetswill bepartiallyoccludedand,
in generalwill notbe“upright” or isolated.Thus,labelingof targetsbhasedn simpleshape,scaler
orientationmodelsis notlikely to besuccessful.

¢ Thealgorithmsneedo bereal-timeandsuitablefor useonlow cost,low power, embedde€€Common-
off-the-shelf(COTS) systems.

Visual surwillancehasbeenstudiedfor decadesvith recentmajor focusedefforts in the US, spon-
soredby DARPA, andEuropesponsoredy ESPRIT The bulk of the prior work hasconsideredndoor
or morestructuredurbansettingswith relatively largetargetshaving hundredsr thousandsf pixelson
target,within scene®f mediumto high contrast.We very briefly survey someof this existing work and
statehow thedomainconstraintsmpactthoseapproachedn additionto the paper<ited,agoodreview
of mary state-of-the-arvisual surweillancesystemscanbe found in the August2000 specialissueof
thelEEE Transaction®n PatternAnalysisandMachinelntelligencededicatedo Video Suneillanceas
well asrecentlEEE Workshopson Visual Suneillance(1998,1999,200).

Therehasbeenconsiderablavork on feature-basededge-basedr boundary-basettacking tech-
nigues,e.g[6, 7, 8, 9]. However, for our domain, the targets’ small size, deformationsand nearly
continualpartial occlusiondimit the applicability of feature-basedpproachesUsing featureso help
initialize a strongemodelis a powerful trackingtechniquehathasbeenusedby mary researchers.g.
with weakmodelsfor peoplein [10, 11, 12, 13, 14] andstrongmodelsfor vehiclesin [8, 9]. Models
permitrestrictingthe searchareafor likely featurestherebyallowing increasedensitvity without sig-
nificantlyincreasinghechancedor falsealarms.However, thesesystemsequirebothareasonablyarge
numberof pixelson targetandmodelinitialization.

Theissueof modelinitialization is evenmoreof a limitation for work on trackingusingdeformable
models,e.g. [6, 7, 15], wherethe initialization is requiredto be quite closeto the target outline. The
deformablemodelsare often far too expensve for seriousreal-timetracking. For example[7] used
128 x 128 imagesandneededl6,000processorso achieve real-timeperformancewhile [15] needed
significantpreprocessinger sceneandcould not handlechangingllumination. For somedomainsthe
initialization (andeven modeltracking)is simplified by the useof color. For example,in [16] andin
numerougacetrackingsystemsskin coloris critical to bothdetectionandtracking. For our adwersarial
targets,color is notlikely to contributeto tracking. Furthermorethesealgorithmsmusteventuallyrun
24-7usingthermalor intensifiedimagery both of whicharemonochromatic.
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Anotherclassof techniquesisesoptic flow, but few, if ary of thesetechniquexanhandlethe slow
motionsandsmall size of our targets. Many usecorrelationor sum-of-squared-diérence (SSD)over
windows [17]. Thesewill notwork well with the smalltargets,large amountsof occlusionandtarget
deformations.Othersusefeature-basedptic flow, computingandtrackingfeaturesover time, e.g. [8,
18, 19. The ASSET2 systemwhich tracksmoving objectsagainsta moving background8] utilizes
a feature-basedptic flow. ASSETF2 usescustomhardware and a PaverPC-basedmage processing
systemto achieve frame-rateperformanceThe exampletracksprovided by the authorsareeithermotor
vehiclesor aircraftandhave mary hundredsof pixels on target. More recently Iketaniet.al. explicitly
addressedbackgroundghat undego motion [18, 19], with an optic flow basedtechniquethat usesa
pathvoting procesdgo detectregionsof similar meanflow. It is assumedhowever, thatthetargetobjects
motioncanbedescribedvith aconstantector Againlargetargetswith minimalocclusionareimplicitly
presumed.

Therehave beenmary papersontrackingandanalyzinghumanmotion,e.g.[10, 11, 12, 13, 14, 2Q].
Motion parameteanalysishasalsobeenusedto distinguishtargets.For example,[21] usesmotion pa-
rametersasthe primarymethodto distinguishbetweerhumanandvehicle.However, it is presumedhat
targetsarenotoccludedandconsisiof mary hundredor thousandef pixels. Thislimits its applicability
in ourdomain.In [10], a systemis presentedhatusesboth motion parameterandtargetsize/shapén-
formationto classifytargetsashuman bird, rabbit,fox or squirrel. The papermentionssmall (25 pixel)
targets,but usessizefor classification resultingin suchsmall targetsbeing classifiedasbirds. Other
relatedresearcthasworked on developingtargetmotion estimatorse.g. [22, 23, 24, 25). Thesehow-
ever, arefocusedmoreon estimatingmodels(usuallysmooth periodicor planarmodels)of the moving
targets. However, areasof cover generallyproduceapparentarget motion thatis neithersmoothnor
planar Theideasof targetidentificationbasedon motion patternamight be generalizedo applyin our
domain.However, the sgmentation/trackingrocessessedin theseapproacheareinsufficientfor the
comple clutterandoutdoorvariationsinherentto the domain. Theirideasmight be appliedaftermore
sophisticatedietectionand frame-to-framematchingand may be usefulfor further analysisof tarmget
type.

Although therehasbeenconsiderablesfforts in the literaturein frame-to-framematching,feature-
basedechniquesmotionestimation andeventargetidentification,the majority of papershave focused
on issuesotherthanchangedetection. Hence the detection/groupingechniquesf suchsystemamay
work well for indoor or simple urbansceneshut are not likely to be sensitve and robust enoughfor
handlingcamouflageddwersariattargets.To reiterate the detectionphases crucial; undetectedargets
cannotbe tracked. Detectionis alsoan areawherethe domainconstraintanake tracking more diffi-
cult thanin the domainsconsideredn (almostall of the) pastpapers.As aresult,muchof this paper
(andour systems computationakffort) concentratesn the detectionphase Becausef the camouflage
andocclusion,targetidentificationis not attemptedandtrackingis limited to matchingconsistenspa-
tial/temporalmotions. However, the sensitve detection/groupingpproachpresentedhereincould be
usedasthe first stagein mary otherdomains. If neededthe systemparameterganbe setto reduce
sensitvity.

The final domainconstraintto consideris the needfor a wide field of view. This usuallyis accom-
plishedwith eithermultiple camera®r a pan-tilt-zoomcameraWhile thetrackingalgorithmpresented
hereincanbeappliedto atraditionalcameraijt wasdevelopedfor usewith the omni-directionatamera
developedby ShreeNayar[26], thatusesa single cameraandmirrorsto capturea full viewing hemi-
sphereor more. This cameragproducesanimagethatseesin all directions(e.g. seeFigure 2) with an
optical systenthatwasdesignedsothattargetscould be unwarpedinto a perspectiely correct,normal
lookingimage(seeFigure4.) Considerablevork alsoexistsin theareaof omni-directionakystemawith
arecentiEEE Workshopin 2000dedicatedo thetopic. We have focusedon the commerciallyavailable
paracamerf27] becausé permitsviewing averylargeFOV usingonly acommerciallyavailablesmall,



DRAFT DRAFT Into the Woods...to appeathe Proceedingf the IEEE, Oct 2001DRAFT Pages

soldiers moving in the woods at Ft. Benning,
GA. Each box is on a moving target, and
only the small white box on the lower left
shows a target at significant distance (about
20m). LOTS can detect soldiers at 30m—
40m, but this example uses closer targets

so the reader can actually see them. :-)

Figure 4. Example showing LOTS interface for the Department of
Defense (DoD) Smart Sensor Web program. Left is an unwarp-
ing of the paraimage into a pair of panoramic images. The right
shows unwarpings of the top four targets, with only two targets in
the scene (one entering a building). The map shows the targets’
current and recent location history (larger dots are more recent.)
Dot color matches the window color showing that target. See Sec-
tion 5 for more discussion.

single,stationarycamerawith a singlevirtual viewpoint. Sincea primary goal wasthe ability to track
camouflagedoldiersmaoving in woodsandfields,the omni-directionaimagingwasa critical feature—
in woods,visibility distancds limited, usuallyto therange30-50meters.

It is worth noting thatthe “spatial resolution”of the paraimageés not uniform. While it may seem
counterintuitive, the spatialresolutionof the paraimages greatestalongthehorizon,justwhereobjects
aremostdistant.In [28] we showv thatalongthe horizon,the resolutionof an omnicameras 4.2 pixels
per horizontaldegree,which is aboutthe sameasthreetraditionalcameraswith 150 degreeFOV that
would be neededo watchthe sameregion. With eitheran omni-directionaktameraor mary traditional
cameraspbjectsto betrackedin awidefield of view will coveronly asmallnumberof pixels. With 4.2
pixelsperdegree atamgetof dimensiorD.5mby 2.0mat50mis approximatelywo pixelsby eightpixels,
yielding 16 pixels pertarget. At 30m, it is 32 pixels. The numbersstatedherepresumedealimaging
of the target, while actualimaging,“edge” effectsandpartial pixel fills reducethe numberof effective
pixelson target. Whenone considerghatthe targetswill alsobe wearingcamouflageasin Figures?2
and3, it is clearthattrackingin sucha wide field of view requiresthe processingf thefull resolution
(640 x 480) imagewith a sensitve, yetrobust,algorithm.

In the next two sectionswe review in detail the changedetectionand groupingcomponent®f the
LOTS system.To illustratethe effectivenes®f LOTS, we will presentunningexampleshasedn some
of themostdifficult typesof changedetection— the detectionandtrackingof a sniper

3 ChangeDetection
Oneof the mostcommontypesof changedetectionis basedon subtractiorof a backgroundnodel (or
models)followed by thresholding. At the core of this type of changedetectionis the modelingof an
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expectedvalueof apixel. This sectiondiscussesaidtechniques.

An underlyingassumptiorof mary earlybackgrounanodelingapproachewasthatasingleGaussian
wouldbesufficientto modelapixel value.Sincedifferentobjectsmayprojectto thesameamagepoint (if
scengointsmove)andlighting canchangemorerecentsystemgprovide multiplemodels e.g.aMixture
of GaussiangMOG), per pixel. Existing systemsusually setthe numberof Gaussiansk, within the
range2 to 5 [15, 29). Furthermorefor computationateasonsthe covariancematrix is assumedo be
diagonalj.e. uncorrelatedObviously, thespecialcaseK = 1 isthetraditionalGaussiaitmodel.We also
notethat,with sufficiently mary terms,aMOG canapproximatethe casewhenasinglepixel’'sintensity
distributionis notwell modeledby a singleGaussian.

To usea MOG model,we alsoneedto assumehateachunderlyingdatacomponensatisfiesa quasi-
stationarycriterion: the signalis flat fading,i.e. the changein pixel intensityvalueis slow compared
to the updaterate of our model. For dynamicMOG models,we also presumethe high-level labeling
processwill correctlyindicatewhich part of the mixture to update. Next, we briefly review previous
work on backgroundnodeling.

The P-findersystem[11] usesa multi-classstatisticalmodelfor the tracked objects,but the back-
groundmodelis a singleGaussiamperpixel. A singleGaussiarperpixel, usedin mary systemsis easy
to estimatelf themodelis appropriatethenthresholdingpbasedn the standardieviationis statistically
well justified. Somesimplersystemsvenignorethe formal modelingof standardeviation andsimply
trackthe meanor someothermodelsof centraltendeng anduseanad-hocthresholdingorocess.

Other papershave statedthat the use of a single backgroundcan limit robust tracking, especially
with outdoorscenegontainingsignificantclutter, e.g.[2, 15, 29, 13], sothesesystemsupportmultiple
backgroundmodelsper pixel. One suchmodel,usedin [15, 29|, is to fit a MOG to the giveninput
samples.The parametridorm of the MOG distributionsthencanbe usedto classifypixels. In [2], a
simplerformis usedthattracksonly thecentralvaluesof thetwo primarydistributionsfor a pixel. These
papersdrav mostly on intuition andinsight, and do not presentexperimentgjustifying their multiple
backgroundnodelassumptioror parametesettings.

The PASSWORDS project,[30] usesanillumination changecompensatiomlgorithmto allow it to
work in outdoorsettings.They alsoemploy a shadev analysisto remove shadavs usingcolor analysis.
They usea backgroundmagethatis continuouslyupdatedto representhe non-maving objectsand
scenery Riddler, et.al.,[31], usesKalmanfiltering for adaptve backgroundestimationwhich takes
into accountchangingillumination so asnot to mistale lighting as objectsof interest. They consider
the changingvelocitiesof foregroundobjectsso that objectsthat aretemporarilystationaryor moving
slowly arenotblendednto thebackgroundA similarapproachs usedin [3].

Thereare two approachegor maintaining/updatinghe backgroundmodel: multi-sampleand per
frameprocessing A few approachess.g.[15, 32|, gathermary sampleer pixel (i.e. mary images)
andthenusethemultiple sampledo computestatisticamodelsusingaMOG andnon-parametricnodels
respectiely. Thesemethodsrequireconsiderablynorememoryandprocessingandaremorecomple,
e.g.[15] requiredhoursof computatiorto build its backgroundnodels,anddid not updatethemasthe
scenechanged.

Perframeprocessin@pproacheseekio computeanupdatedackgroundnodelfor eachnew frame.
Theseapproachesire probablymore commonbecauseahey requiremuchlessstorageand muchless
computationthan maintaining2 K N images(for a temporalwindow of size N and K component
MOGSs). The basicideais to updatethe backgroundnodelvia temporalblending(Equation2). This
defactostandardnethodfor backgroundmaintenancés examinedin the next section. An alternatve,
which canreally be viewed as simply a more principled approachto temporalblending,is to usea
Kalmanfilter, e.g.[3].

In systemswith multiple backgroundsa separatéhigherlevel) proces®ftendeterminesvhichof the
mary backgrounds$o update If truevarianceestimatesreavailablefor eachof the mary backgrounds,
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thentheMahalanobiglistancecanbe usedto measuralistanceof theinputfrom thevariousbackground
anddeterminewhich to use. In LOTS, we do not computeeachmodel’s variance but insteadusethe
straightforvard processf simplegrey-scaledistanceo determinenvhich backgroundnodelis closer
For this classof reference-imagbased:hangealetectiorsystemstherearetwo maincomponentshat
mustbeaddressedyackgroundnodelingandthresholdingWe now examineeachof thesen turn.

3.1 Background Modeling Summary

For the sale of simplicity, we presumea two backgroundnodel. At sometime ¢, let the primary back-
groundberepresentely B!, (¢), andthe secondanpackgroundy Bi(¢). The pixel intensityvalueis
It(¢), whereg is thepixelindex. For grey-scaleémagesp = (u, v) andfor n-channetolor¢ = (u, v, c).
Withoutlossof generalitywe presumeheinputattime ¢ — 1 wasclosesto the primarymodeIBItj1 ().
For performanceaeasonsif thatis not true, we swap the pixels betweerthe two backgroundmagesto
male this likely to bethecasein the next time step.We definethe differencemageso be

Di(¢) = I'(¢) — By(¢)
Di(¢) = I'(¢) - By(¢) (6
anddefinevariableq € {p, s}, astheindex with smallerdifferenceD! andg astheremainingindex.
In LOTS, backgroundupdatesdependon feedbackfrom upperlayers— updatingmore slowly in

regionswe considerto betarmgets.In particulay we allow for someprocesgo labelthe pixel ¢ asbeing
in thetargetsetT orin thenon-tagetsetN. Then,we candefinea generalizedipdatewith

_ [1—a1Bi(¢) +a'I'(¢) €T

t+1
B 0= 1 ajBilg) +al'(s) e Nt @
wherea’ maybe (generallyis) smallerthana. Theotherbackgroundnodelis notupdatedi.e.
Bi*'(¢) = Bi(9) 3)

Theblendingof Equation? cansene multiple purposeslts originalmotivationwasto supportempo-
ral changesn lighting. A secondaryotentialbenefitimplicitly exploitedby mary systemsut explicitly
consideredn [14], is thatthe blendingof a moving targetwith the backgroundroduces “beneficial
ghost”of thetamget’s path. Theuseof o' < «a allows the systemto moreslowly adaptin targetregions,
limiting how quickly atargetwill be blendedwith the backgroundHowever, this alsoresultsin longer
falsealarmpersistencandlimits thevalueof beneficialghosting.

If oneconsidersonly the naturaldiurnal changesn lighting, thenfor mostof the day the changes
neededo accountfor this arevery small. Neverthelessmary systemsge.g. [11, 33, 34, 21], usea
considerabljfarge . This largervaluemay be explainedby notingthatlarger valuesare betterif that
is the only mechanisnwithin the systemfor handlingchangesausedy fastlighting changesuchas
moving cloudsor targets/specularlynducedautomaticgain control (AGC) effects. In addition, larger
valuescontrikute to beneficialghostingof targetswhich tendto fill in gapswithin the moving target,
therebyincreasinghedetectabilityof fastmoving targetswhile reducingsensitvity for low contrastand
slow moving targets. Later, we discusshow LOTS handlegheseissuesby usingmultiple backgrounds
anda separatdighting changedetectioralgorithm.

An implementatiorissueof usinga modelsimilar to Equation2 is thatit generallyrequiresdouble
precisionimages,especiallywith small updatevalues. As discussedn [2], usingvery small blending
parametersvhile using only integer imagesand integer math requiressometradeofs. For the sale
of both speedand maintenance®f numericalaccurag, LOTS doesnot updatethe backgroundmages
every frame. Instead,t reduceghe rateat which the backgrounds updatedsuchthatthe multiplicative
blendingfactorwasatleast1/32. For example aneffective integrationfactorwith o = 0.0000610351 is

achiezedby addingin % of thenaw frameto the backgroundevery 1024tN frame. This slower approach
hasa secondanadwantageof reducingcost. Analysisof LOTS shavedthat,if thebackgrounds updated
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eachframe, it becamehe mostcomputationallyexpensve componenbf the system largerby a factor
of 4-6 thanthe next mostexpensve operationof subtractiorandthresholding.Becauseof this, with its

usualsettings,the systemonly calls the updateprocessonceeach64 to 512 frames. Sincean update
requiresaboutonemillion operationgtwo multiplications,anadd,anda shift perpixel), this producesa

savingsof 60480 MIPS.

Furtheranalysis,motivatedin part by our analysisof [35], discovereda minor difficulty with this
approachTheanalysissuggestethatvery smallvaluesof o aremostbeneficial. However, with theuse
of integerimagesandupdatesgevenif thefractionis 1/16,the updaterule cannotreducethe difference
to zerobecausehefinal few bits areneveraffected.Thus,for fastimplementationsye developedanew
updaterule thatwe call theup-downor the conditionalincrementmodel:

t i t 1
s = { Bl 18l < 1 (4)
q q q
B;(¢) otherwise
wheren is the updateparameter Again, one could usefloating point arithmeticandallow arbitraryn,
but we stick to integersandimplementfractionaln < 1 usingtemporalsampling.

Perapplication the up-dovn modelrequiresesscomputatiorandallows the backgroundo exactly
matchthe input with just 8-bit integer mathwhich permitsMMX optimizations’> The mostimportant
drawbackto the conditionalincremenimodelis thatif atargetis mislabeledthesystendoesnot“blend”
it in significantly;it doesnot matterif thetargetis nearlythe sameor distantin grey valuestheupdateas
constantSincetheprimarygoalof thisaspecbf thesystenis to updatehebackgroundo handlediurnal
lighting changegwhich shouldbe slow), usinga scaleddifferencedoesnot seemjustified. Ratherthan
alwaysblendingquickly, LOTS hasaseparateapidlighting changedetectiorsubsystenthattemporarily
changeshe systembehaior whenlarge (i.e. non-diurnal)lighting change®ccur Whenstronglighting
changesredetectedthe currentsystemtemporarilyincreasests thresholdswhile alsoswitchingto a
larger a-blending-basedlgorithmto more quickly adaptaway the changes.The switch betweenthe
modesis automaticandbasedon rateof growth in a numberof pixelslabeledastarmgets. If the growth
rateis very radical,suchasmight occurif anadwersaryshinesa laserdirectly into theimagingsystem,
the systemreportsit immediatelyandtries againon the next frame. With this separatdighting model
changetechnique(also suggestedn [36]) the systemcanmaintainhigh sensitvity while maintaining
robustness.

While the majority of existing systemsf which we areawareusethe blendingwith a multiplicative
factor thereis oneotherpaperthatusesanadditive updaterule. In [3], whichaddressesuneillancein a
badlyilluminatedenvironment,a Kalmanfilter is usedfor backgroundnodelupdate.Thatfilter results
in anadditive factorto the currentbackgroundnodel,with the factorcomposedf two terms,onefor
slowly varyingillumination andonefor white noise. Sinceneitherof thesetermsshouldvary quickly,
theadditive termfrom thatKalmanfilter will generallybezeroor +1.

Unlike [3], LOTS usesmultiple backgroundmodelswhich allow it to betterhandlecomplex back-
groundclutterincluding objectssuchastreesand grassthat move but whosemotionis consideredn-
significant.Figure5 shavs anexampleof thedifferencebackgroundmages.Thetreesin thesceneand
the pine needlesisible on the lower left of the imagemove significantlyduring the training exercise.
The primary backgroundmageis visually indistinguishablgrom the input imageshowvn on the left.
Theright imageshaws the secondarnpackground.In this image,the white pixels arethosethat never
requireda secondbackgroundandhencedo not have one). The non-whitepixels shav the secondary
pixel valueatthatlocation,e.g.the darker pixelsin the neighborhooaf the treeon the upperright and
thepineneedlesn thelower left arenoticeable Notethatthe singlepineneedles responsibldor a sig-
nificantly largerregionin theseconchackgroundmagebecausét hasa largerrangeof motions.LOTS

2|t requiresonly acompareandaddition,blendingrequiresatleast2 add/subtractand2 multiplies,andcannotbedonein 8-bit
math.
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Figure 5: The left image shows a section of a paraimage containing a sniper that illustrates
the multiple backgrounds used in LOTS. Left is the primary background, right the secondary
background.

alwayskeepghe“closer” pixelsin theprimarybackgroundHencejf in thenext frametheneedlemoved
upward,the darker pixelsat its currentlocationin the primary backgroundvould no longermatchand
theassociategixelsin the primaryandsecondarymageswould be swapped.In this sensethe moving
backgroundnayappeato move in the primarybackgroundmageaswell.

3.2 Thresholding

Giventhe backgroundmodel, the changedetectionsubsystenstill needsto decideif a pixel's change
is significant. A classicalapproachpresuminga Gaussiaror MOG modelfor the backgroundB is to
computethe meanu(B) andvariances(B) andusestandardstatisticaltestsfor the thresholding.For
example,we labela pixel ¢ accordingo

T'() = { L if |u(B(9)) — I'(9)| > 20(B(9))

0 otherwise

(®)

wherea two o testwould give us a detectionrate of 95.1%. Of course,ary othermultiple of o could
be usedwith differentchoiceson the missdetection/alsealarmrates.In LOTS, we do not presumea
Gaussiamodelandour thresholdsarebasedn thedynamicmodeldiscussed.

While statistically sound,maintaininga true variancemodelis expensve and only appropriateif
noiseis an additive stationaryGaussian.This static modelingis discussedn detailin [35] whereit is
shavn thatfor this staticanalysisa single Gaussiantatherthana MOG, generallyhasa 15%to 200%
largererror. Theintuitive reasons thatthe MOG canaccountfor variousnon-Gaussiafeaturesn the
distribution.

In Figure6, eachpictureshavs the histogramof the pixel intensityvalueof onepixel whenthetime
is changing. Eachrow in eachpicture represents histogramfrom 100 samplesin consecutre time
intervals. The vertical axis of thesegraphsrepresentsime. The darker the pointsin thesehistograms,
thehigherthe countsare. Figure6(4) shavs the histogramfrom a pixel on thegroundwherethetarget
appearsnfrequently;6(B) is from apixel onthegroundwherethetargetappearsnorefrequently;6(C)
is from apixel of aswayingleaf; 6( D) is apixel onawaving short-grassrea6(E) is apixel onthewall
of abuilding nearthe parkinglots and6(F") comesfrom shadavs in the parkinglot. Only pictures6(A)
and6(B) containary targets.Fromthefigure,we noticethatthehistogrammoveswhentheillumination
changes.

Clearly, thesefiguressuggeshon-stationarylistributions. Therefore usingvariancefor thresholding
is notappropriate Becausenostsystemsaupdatetheir backgroundvia a processsimilar to thatin Equa-
tion 2, theseshiftscanberemoved. However, mostof thedistributionsarealsochangingn variance—
noticethevariationsin thewidthsin 6(D).
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Figure6: Intensityhistogramsf differentobjectsovertime.

Blendingor otherlow-passfiltering algorithmscanbe developedfor variance-lile calculations.For
example,

o = (1= p)oi_y + p(Xe — )" (X — o) (6)
is usedin [29] asa varianceupdateequationbasedon a new obsenation, where X, is the new pixel
value. Although suchfiltering may yield successfutlynamicthresholdsthe statisticaljustification of
this useof variances lacking. Furthermorehe questionof how sensitvity is impactedby thisapproach
hasnot beenexplored.

LOTS's approachs someavhat differentandintendedto maintainhigh sensitvity. In preliminary
systemexperimentationwe testeda running variancecomputationbut found it expensve and often
problematic. The difficulty may be that the underlyingnoiseis non-Gaussiaand hencenot always
well suitedto traditionalvariancetests.For LOTS, we developedanalternatve test— see[28] for more
detailsandananalysis Whenupdatingthereferencemage theperpixel thresholds alsoupdated!f the
pixel differencefrom the nearesbackgrounds above the perpixel thresholdandleadsto a “detected”
pixel thatdid not becomepartof ary region, thenthe thresholds consideredoo low andis raisedby a
constaniC,,. If apixel differenceis below threshold thenthe thresholdis reduced.To increasesystem
stability andreducefalsealarms,the thresholdincreasdor noisy pixelsis largerthanthe reductionfor
below thresholdtargets. Furthermorethe chanceof increasinghe sensitvity occursonly 1/Cy of the
time. (Onecouldalsoimplementthis asa fractionalreductionof thethresholdput theinfrequentupdate
approachallows the useof just integersandis computationallymore efficient.) In otherwords, the
approachn LOTS:is to replacea comparisorwith anapproximatgmeasuredyariancewhichwould, if
the noisewasGaussianproducea falsealarma fixedfraction of the time, with a dynamicthresholding
thatis updatedsoasto keeptheapproximatémeasurediractionof falsealarmsataconstantate.Rather
thanfit a modelthat predictsthe falsealarms,we directly estimatethemandadaptto keepthemat the
desiredrate. Figure 7 shows the dynamicthresholdsor a samplescene.The regionswherethereare
two backgroundsendto have high thresholdsbecausesa pixel changed$rom its primary color to its
secondaryit goesthrougha rangeof othercolors. This resultsin fleeting pixel level “detections”that
pushup threshold.The lower right, wherethe cameras in theimage,hasa moderatelyhigh threshold
becauséhisdarkregionis lessstabledueto AGC effectsandthis highernoiseresultsn ahigherdynamic
threshold.Theimageontheright of thefigureshavs pixelsabove threshold Hadyou noticedthe sniper
in thegrassn Figure5? He wasdetectedandthosepixelswill notbeconsideredalsealarms.However,
the few isolatedpixels (on the left, right andtop) will be removedby later processingand hencewill
causeahedynamicthresholdsatthoselocationsto beraised.

The primarydisadwantageof this dynamicthresholdapproachs thatit depend®nthesystems clas-
sificationof a pixel. Hence,it may improperly adapta thresholdwhena very smallandlow contrast
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Figure 7: The left shows the system “dynamic” thresholds as an image. Darker pixels represent
a higher threshold. The right image shows pixels above the threshold.

targetfirst comesinto view, therebydelayingits time to detection.This is the reasonwe candetectand
trackregularsoldiersat 50m, but we cannotdetectthelow contrasisniperuntil about20m—-25m.

In additionto the dynamicperpixel threshold,the systemhasa usertunableglobal “sensitity”
thresholdthat is a function of the scenarics requiredfalsealarm (FA) rate and miss detection(MD)
rate. Evenwith the dynamicthresholdanda global threshold,it wasstill quite difficult to geta good
balancebetweerfalsealarmsandmisseddetections.To addresghis, LOTS introduceda new approach
to thresholdingwhichis describechext.

4 Grouping: Quasi-ConnectedComponents(QCC)

After changedetectionis applied,mostsystemsorm regionsby collectingconnectegixels. Because
therecanbe small gapsfragmentingthe tamgets,andbecauseheremay be smallisolatedfalsetamets,
mary systemsaugmentheir connectedomponentsvith morphologicabrocessing34].

This sectionpresent@nalternatve approacho morphologicabrocessingvhich combinesggrouping
with thethresholdingnto a processalledquasi-connectedomponent§QCC). While it would begood
to have a detailedcomparisorof QCC andmorphologicaprocessinga comparisorwould dependvery
heavily on the imagecontentand parametersisedandwould be difficult to quantify. Herewe simply
presenthe new approachandits analysisin Section6. Onemajoradwantages that QCC permitsthat
typeof probabilisticanalysissimilar analysishasproventoo difficult to do with morphology

A main problemfor ary pixel-level changedetectiontechniqueis the settingof the thresholdfor
decidingwhat a “significant” changes. While the analysisin Section6 providesa principledway of
computinga Recever OperationCharacteristidROC) curve to make that choice,deriving theseROC
curvescanbe quitelaborintensive [35]. However, thetradeof betweerthe FA andMD ratesis oftena
difficult decision.If onechooses highthresholdo maintainasmallFA ratethenthe MD ratewill often
soar On the otherhand,the lower thresholdneededor alow MD ratewould resultin a high FA rate.
Thechoiceis difficult, evenwith the knowledgeof the ROC curves.

This problemof selectinghresholdss notnew. An importantapproachthathasbeenvery successful
in Canry-like edgedetectorsis thresholding-with-hystesis(TWH). Theideais to have two thresholds,
a high threshold(T},) andlow threshold(7;). Regionsaredefinedby connectedixels above the low
thresholdwherethe region alsocontainsa givenfraction of its pixelsabove the high threshold.In this
way, theregion hasan overall high sensitvity while alsotrying to insurethatatleastsomeof the pixels
arevery unlikely to befalsealarms(sincethey areabove the high threshold) Morphologycanfill gaps,
but it doessoblindly; TWH fills gapsbetweerhigh-confidenceegionsin afar moremeaningfulwvay.

Therearetwo difficulties herethat mustbe addressedh a TWH implementation.First, animple-
mentationbasedn iterative region-graving is not efficient enough.Secondgvenwith a low threshold



DRAFT DRAFT Into the Woods...to appeathe Proceedingf the [IEEE, Oct 2001DRAFT  Pagel5

nearor equalzero,gapswill occurbecausgpartsof targets,especiallycamouflagedargets,canmatch
the backgroundexactly. Thus,we still needa techniquethat canfill acrosssmall gaps. Unfortunately
mixing morphologywith TWH is not obvious (exceptperhapsto apply morphologyafter region find-
ing with TWH). We proposean alternatve approachnspiredby our earlierwork on G-neighbors[37].

The approachwhich we call quasi-connectedomponentscombinesTWH with gapfilling andcon-
nectedcomponentabeling. The proces<fficiently insureshateachpixel in a quasi-connecteckgionis
“connected’to a givennumberof pixelsabovethe high thresholdgvenif thepixel is within agap.

While we weredevelopingQCC, Foresti[3], wasindependentlhydevelopinga systemthatalsouses
a thresholding-with-hysteresisasedapproach.While the detailsof his implementatiorare not totally
clear his TWH appeardo bequitedifferent.lt is unclearif it is a2D or a 1D threshold-with-hysteresis.
Theusagediscussesocal neighborhoodghut it is not clearwhatinformationis propagate@ndhow. If
it implementsregion-growving, this may be a part of the reasorthat the systemrequires.5 secondgo
process 256 x 256 image. (LOTS runsat 30fpson a 480 x 480 paraimagen a 266 MHz PII). It is
interestingo notethatanotheresearcheworking on detectiorin a difficult environmentalsofoundthe
needfor a TWH-like approach.

Theprocessingnherentin QCCis diagrammedhn Figure8. Thisis acomple figuredescribingmary
aspect®f a complex processandwill be describedbverthe next pageof this paper The descriptionis
intermixed with commentson efficientimplementatiorof QCC. Keepingthe quasi-connectedompo-
nentsprocesdastis accomplishedy threetechniques.The mostimportantandinterestingefficiency
techniqguecomesfrom a reductionin resolutionthat simultaneouslyrovidessmall gapfilling. We will
discusghisin somedetailfirst. Theothertwo efficiengy aidsarelesssignificantandwill bediscussedt
theendof this section.

During the detectionphase the systemsimultaneouslypuilds a lower resolutionimageof the pixels
abovethreshold(e.g. the24 x 24 imageon the top Figure8 is compressedown to thesmaller6 x 6
imagein thelower left.) Becausef its relationto similar conceptsn multi-resolutionprocessingthis
is generallycalledthe parentimage,whereeachparentpixel hasmultiple childrenpixelsthatcontribute
toit. Thevalueof eachpixel in this parentimageis, initially, a count(area)of how mary of its associ-
atedchildren(high resolution)pixelswereabove the low thresholdandhow mary wereabove the high
threshold.

For computationakfficiengy, one 32-bitintegeris usedto hold two values— the numberof pixels
exceedingthe low thresholdis in the lowestsixteenbits andthe numberof pixels exceedingthe high
thresholdis in the highestsixteenbits. Becauseof limited rangesthis allows a single 32-bit addition
to combineboth countswithout the dangerof overflow. The shadecbixelsin Figure8 are above the
low threshold the pixelsthat are both shadedand patternedareabove low andhigh thresholds.Since
theresolutionis reducedoy a factorof four in eachdirection,eitherthelow orderor high ordersixteen
bits of the parentimagepixel storagecontainsvaluesbetweenzeroandsixteen,andallow usto have
accuratdow-level areacountsfor thresholding. Connecteccomponentsre not computedn the full,
high-resolutionmage.Insteadthey arecomputedn the parent(low-resolution)image.As theconnec-
tivity is computedwe accumulateéhe areain termsof high resolutionpixels. For examplein Figure8,
the differenceimageshaows regionswith areadive (upperleft grey region), 13 (lower left middle grey
region) and21 (middle right dark region). We notethat noneof theseis completelyconnectedt high
resolution,llustratinghow QCC canaccomplisHine gapfilling.

In the bottomleft parentimageof Figure 8, two differentpixels arelabeledwith their values. The
first hasvaluefour becausé is the parentof four pixelsabose thelow thresholdandzeroabore thehigh
threshold.The seconds associateavith four pixelsabove thelow threshold pneof whichis alsoabove
thehigh threshold.Thereforet hasthevalueOx0100+ 0x0004= 0x0401(65,540decimal).

To helprejectpurenoiseregions,a low-resolutionimagepixel with a countof oneis ignoredwhen
formingtheparentimage,i.e. beforeconsideringconnectvity. An exampleof thisis shovn onthelower
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Figure 8: Example showing thresholding-with-hysteresis, quasi-connected components and
area thresholding processing.

right of the high-resolutionmage. In Section6.2, a detailedanalysisof someof the “noise” properties
of region-basedjroupingsimilarto QCCis provided.

The left imagein Figure9 shaws the full “parent” imageassociatedvith the frame shown in Fig-
ure ??. The middle shawvs parentimageafter running connecteccomponentsalgorithmwheretargets
with sufficient area(6 high resolutionpixels) are coloredwith the region number Theright shaws the
effect of QCC,whereonly thoseregionsthatcan“connect”to pixels above the high thresholdremain.
Againfor the sale of presentationwe areusing“huge” targetswith morethan300 pixels on tamget, so
thereadercantell which componentshouldbeonthetarget. The systemis intendedo work with much
smallertargets,oftenwith just 10-30pixelson target. The “target” in this caseis the sniperanda small
tail of theareaof grassthatherecentlycrossecver (whichis slightly crushedcomparedo its original
state.)

Thesettingof low thresholds the sumof thedynamicthresholdorocedurentroducedn the previous
sectionandthe globalthresholdthatcanbe adjustedy theuser The ROC curvesdescribedn [35] and
summarizedater(Section6.1)areusedto settheglobalthresholddependingnthedesiredVD/FA rate.
The desiredMD/FA rateis generallya function of the scenarioe.g. for sniperswe may be willing to
acceptahigherFA rateto insureno misseddetections.

Thehighthresholds currentlysetat a constantither16 or 32 valueshigherthanthe low threshold.
This simpleaddedconstantabove the low thresholdhasthe advantageof beingcomputableby shifting
the resultsusingthe low threshold. In particular a pixel is above low thresholdis a non-zerovalue
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Figure 9: Images showing parent image after various stages of QCC labeling, left is after
thresholding, middle after connecting regions, right after full QCC.

resultswhensubtractingusingsaturatingarithmetic,the low thresholdfrom absolutedifferenceof the
new imageandthe referencamage.lt is above the high thresholdf shifting the low-thresholdresultis
still non-zero.Thuswe computeboththresholdsn an efficient manneyevenwith a perpixel dynamic
threshold.

Theearlyversionof LOTSsimplyrequiredaregionto haveatleastonepixel aborethehighthreshold.
Becausdhe probability of somenoisepixelsbeingabove the high thresholdincreasesvith the number
of pixelsin the regions,we recentlychangedhe systemto have the numberof pixels requiredto be
above highthresholdncreasdo ceil(llTsA), whereA is thehigh-resolutiorareaof aregion.

As mentionedin additionto theresolutionreduction therearetwo othertechniquesisedfor efficient
implementationFirst,we usemarkersgeneratedavhile thresholdingsothatQCConly processegegions
betweerthefirst andlastnon-zeroparentpixels perrow. It alsousesmarkersto simplify processingf
the previousrow was“empty” Thesemarkersaresetaswe thresholdthe high-resolutionmagesothat
the QCCcomputationareonly computedn segmentsof eachrow.

Secondwe usea very efficient union-findalgorithm[38] — the compleity is nearly linear (with
a small constant)n the numberof pixels above threshold. The normalconnecteccomponenphases
only appliedto the low-resolutionparentimage P which producesa labelimage L. Our Find pro-
cessincludessomeextra processingo maintaininformation on which of the new labelsmatch,in a
spatio-temporaensethepreviouslabels. TheUnion algorithmis standardexceptthatwe extendit to
combinghearea®f theassociatedegions. As theregionsgrow (i.e.asunionsoccur),we sumthevalues
of the parentpixelswithin thatregion. Becausef the encodingused this singleadditiontrivially main-
tainsboththesumof thenumberof pixelsabove thehighthresholdandthenumberbetweerthelow and
highthreshold Whenthe systemhascomputedheregionlabels,we candecideif aregionshouldbere-
tained.If onewantstheimagepixelsto havethenew labels,ary connectedomponentamplementation
requiresa secondelabelingpass.In QCC,werelabelregionsthatdo not meetthe areathresholdeither
too few pixelsoverall, or too few above the high threshold)}to the backgroundabel. QCC mayalsobe
extendedto includefurther tests,suchas minimal areaor region pixel densityenforcemento further
eliminatenoisyregions.In thisway, thethresholding-with-hysteresis essentiallycomputedduringthe
connectedomponentabelingprocesswithouttheneedfor eitheraddedhresholdingpassesr iterative
regiongrowing.

Theresolutionreductiondoesmorethanjust a datareductionspeedupthe resolutionreductionalso
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hastheeffectof filling in smallgaps.However, thegapfilling is spatiallyvarying;the maximumdistance
between'neighbors”variesfrom four to eight pixels. While LOTS usesa reductionby four, the idea
workswell with reductionsy factorsof eithertwo or eight,with moreor lesstheimpacton gapfilling
andregion fragmentatiorthat onewould expectfrom larger or smallerwindows. While not as“uni-
form” asmorphologicaprocessingit is considerablyaster Theadvantagehowever, is how it naturally
combineswith TWH. Furthermorewhencombinedwith the areathresholdingor densitylimits, it can
distinguishbetweera “solid” region anda fuzzy collectionof isolatedpoints,somethingnorphological
processingannoteasilydo. While not usefulfor our applicationshigherlevel morphologicaprocess-
ing, suchasstructurecelementsearchingor long-thintargets,still canbe appliedto the resultof QCC
processingWe arecurrentlyinvestigatinga tighterintegrationof QCCandmorphology

Given that region detectionhasbeendonein the currentframe, the systemmust then attemptto
temporallyassociateurrenttargetswith pasttargetsandto analyzethetrackedregions. To helphandle
fragmentatiordueto occlusionsthe “tracking” modulein LOTSwill alsocombinetwo regionsthatare
spatio-temporallyloseif they areoneregionin previousframes,if the motionparameterandsizesare
consistenaindif the systems confidencen thetargetis high.

Other approachego groupinginclude techniqueshat memge closely relatedregions. Moscheni,
et.al.[39] developedtechniquedor video codingandrobot vision that work only on two consecutie
frames. Both spatialandtemporalinformationis usedto computea similarity betweernregions. They
aremeigedusinga weighteddirectedgraphanda graphclusteringalgorithm. Their paperalsocontains
agooddiscussiorof previouswork in spatio-temporateggmentatiorandmelrging. Castagneet. al. [40],
fuse automaticseggmentationwith semantidnformationprovided by a userto createsegmentedvideo
streams.The autonomousegmentationis achiezed throughan analysisof multiple imagefeatures.It
is the users duty to collectthe segmentedregionsinto regionsof meaning.Theseapproachemight be
combinedwith thesimpleLOTS memingto increaseerformance.

5 Tracking within LOTS

This sectionbriefly reviews the remainingcomponent®f LOTS — moredetailscanbe foundin [1, 2,
28]. ThetrackerrunsunderLinux usingMMX enabledorocessorsThe original systemran usingfull
resolution(640 x 480) imagesat 30fpsona 266 MHz x86 MMX systenmwith 32MB of memoryanda
PClIframe-grabber Therecentadditions,especiallythe lighting normalizedmatchingandnetworking
interface reducedheprocessingpeedo 15fpsand12fpsrespectrely on a 300MHz portable/wearable
system. MMX instructionsare usedonly for the differencingpart of the algorithm. Thereare mary
“real-time” trackingsystemsut the authorsareunavareof ary othersthatcould, provide sensitve full
resolution(640 x 480) trackingat 15 or 30fpswith low-costCOTS hardware. Someof the contributions
of this paperaretechniquesntendedo helpachieve thistype of performance.

Becausdhe noiseat eachpixel canchangethe systemmaintainsa perpixel threshold.The system
addsa globalthresholdto the perpixel thresholdallowing usersto decreassensitvity. In earlierwork,
[1, 2], our systemwas describedas having mary parametershat were setby hand. While thereare
mary variablesn the system L OTS now hasadaptve algorithmsthatautomaticallyadjustthe dynamic
thresholdtheperpixelthresholdandtheimagingsystencontrasandbrightnessTheendusercanonly
chooseahreeparameters— the minimumtargetarea,the globalthreshold,andthe requiredconfidence
neededbeforethe systemactually reportsa target. In practice,we usedtraining datato setthe area
thresholdandglobalthresholdor avarietyof scenariogncludingwoodedareassniperdn fields,soldiers
in town, anda mixedwood/fieldsetting.

LOTS usesatwo backgroundnodelsimilar to thatdescribedn Section3, with two additionalback-
groundimages.The additionalimagesarenever blended— they areexactcopiesof olderimages.This
helpsthe systemignore“ghosts”’thatappeamwhenatargetentershe sceneandpersistgor 2-5minutes.
More importantly the systemaugmentsghe changedetectionwith a lighting analysis.After QCC,each
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targetis comparedisinga normalizatiorfactorto seeif it canbe explainedasa purelighting changeo

thatregion. Eachtargetregion undegoesa normalizedcomparisor{scalingby the averagevaluewithin

the“target”) andcomparingwith thecorrespondingixelsin thereferencemage(which arenormalized
in the sameway). Becauseve have few pixelswith targetregions,we canafford this morecostly anal-
ysiswhich helpsto ignorethereal, but insignificant,changesausedy moving shadevs andlighting

changes.

Evenwith trainingandproperparametesettingsthe system$ sensitvity canleadto falsedetections.
To reducethesewe usehigherlevel processingsuchasthenormalizedcomparisongor lighting changes
just mentioned. After QCC and region filtering, the systemdoestemporalassociation.Most targets
arelinkedin time by QCC directly. However, for thosethat aredisoccludingor strongly fragmented,
the systemusesthe relatively standarddeaof matchingspatio-temporallynearbytargetsto maintaina
track. This includessearchingoack mary framesto handlesmall targetsoccludedby larger obstacles
(e.g.closertrees).

While the systerneeddo bevery sensitve, whatwe choosedo reportto the usermaybeonly afrac-
tion of thedetectionsThesystencomputes confidencaneasurandby settingthe minimal confidence
level for reporting theusercanmoredirectlyimpactthe MD/FA rateof reportedresults.Theconfidence
measurecombineghe overall target size,its speedn 3D, the quality of the match,occlusiontime, its
rateof growth (for handlingcomple lighting falsealarms) andits cumulatve distanceraveled(for han-
dling objectslike moving branchedeforethe secondanpackgroundnodelcanadaptto includethem).
Theuseof cumulative distanceraveledis similarin spirit to ideasin [17] thoughtheimplementatioris
significantlydifferentaswe do not computea detailedflow.

Usingthe imagelocationof a detectedarnget, the systemusesthe single-vievpoint propertyof the
omni-directionaparacamerto back-projecthatdetectedargetontoagroundplane.Systencalibration
allows the userto specifynorth, cameraheightabore the groundandits GPSlocation. Usingthis, the
systemback-projectsaysto find the 3D position of the targets. On approximatelylevel ground,the
systems evaluationis limited by the resolutionof the GPSusedto gathergroundtruth — resultsare
oftenwithin the2—3metersof accurag in thatgroundtruth.

ThreedifferentUI’ s have beendevelopedfor the LOTS system. The two mostsignificantaspects
of the interfacesarethe geospatialocalizationof tagetsanddesignfor efficient bandwidthutilization
usingthe DARPA VSAM protocol[41]. Themostrecentinterfacewasdevelopedfor the DoD Smart
SensoiWeb program. This interfaceproducesIPEGimages(Figure4) that shav the omni-directional
imageunwarpedasa pairof panoramiwiews. It alsoshovs a mapwith thetargets’3D positionsplotted.
Themapis colorcodedsotheusercanrelatetargetsto oneof thefour unwarpedperspectieimagesand
betterrelatethe tracksof targetsover time. The mapkeepstarget positionsfor five minutesso a user
canseewhatregionshadactvity evenif notargetsarecurrentlybeingtracked. The systemmaintainsa
databasef all theseJPEGimagesandallows usergto requestrackingresultshasedntime or location.

6 Error Analysisand SystemPerformance
Having looked at the systemand somekey featuresof its implementationwe now discussits perfor
mance. The performancas clearly a function of someof the systemparameters.n this section,we
discusghe settingof thoseparametersWe begin our discussiorof performancet the pixel level using
ROC curwes, comparingdifferentsystemparametersand different potentialalgorithmson a per pixel
basis.Thenwe turnto a moreformal analysisof regions.

Thefirst part of the analysisthe pixel level analysis,is relatively independenof LOTS, it doesnot
useQCChutis ratherananalysisof thebackgrounar referencenodelingapproachTheregionanalysis
shavstheadwantage®f QCC.
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6.1 Pixel Level Analysisand ROCs

The pixel error analysisbegins with the computingof the Probability of False Alarm (pr5) andthe

Probability of Miss Detection(p,q). We corvertthe prg andpyy,q into ROC curveswhich canbeused

to setsystemparametersTo producea ROC plot, all systemparametersut onearefixedanda graph

of prg VS pm is plottedasthe parametenf interestis varied. One may combinemultiple ROC plots
for differentvaluesof someof the fixed parameters.For backgroundsubtractionbasedsystemsthe
parameter®f mostsignificantinterestarethe thresholdq7; and7}) andthe blendingparametefa or

n)-

ReceverOperatiorCharacteristi€ROC) curves/analysibave beenusedextensielyfor systemsanal-
ysis and parametesetting. ROC analysisgenerallyrequiresconsiderablexperimentatiorandground
truth evaluationto supportthe acquisitionof thenecessarys; andp, 4 data.A simple,thoughlaborin-
tensve,approacho obtainingps; andpy,q is throughsystenoperatioron controlleddatawith alabeling
of falsealarmsand missdetections.The desiredprobabilitiesthencanbe obtainedfrom the frequeng
counts. However, this processnustbe rerunfor every systemparametechange therebysignificantly
increasinghecosts.

It is possibleto obtaintheseprobabilities,and hencethe ROC curves, moreefficiently. In [35], we
shaved how thesevariablescanbe computedrom directmeasurablesTo effectively usethis approach
we needto setmodelparametersisingrealdata.Sincethatis mostly aboutefficient computatiorof the
ROC curwves, it is not presentedhere. In this analysiswe annotatech numberof real sequenceto get
targetinformationand collectedbackgroundnodelsfrom even more sequenceshereannotationwvas
trivial becaus¢herewerenotamgets.

The evaluationhereinwasfeasibleonly becausét madeheavy useof the equilibriumanalysisfrom
[35] which developedmodelsof the systems behaior and derived pry andppy,g in termsof simpler
measurement§.heformulasareabit long for this paper but the basicideais straightforvard. Develop
astabilizedmodelof thebackgroundisingrealtargetfree data,thencomputeps 5 andp,g by assuming
somedistribution for the target, andthat the targetsare sufficiently transitoryto not impactthe back-
groundmodelstate.For systemsanalysisvith ROC curves,this approactallows oneto analyticallymix
different“target” distributionsandtestthemagainstdifferentbackgrounds By gatheringtraining data
on mary differentinputs,we canhave target modelsfor pedestriansgars,trucksand eventargetsthat
try to blendin (i.e. camouflagedargets),andmix themin with differentbackgroundsWe studiedtwo
typesof backgroundnodeling.

Static Analysiswhereone solvesfor the equilibrium stateof the backgroundnodel assumingMOG
modelsfor the backgrounds.Oncethis is done, varying a static thresholdis trivial asthe entire
distribution is known. The equilibriumis recomputedor eachdesiredblendingparameteasthe
blendingaffectsthefinal distribution. Intuitively, blendingtendsto shift the differentcomponentsf
the MOG toward eachothersinceary transitionfrom onebackgroundo the othermay, duringthe
transition,slovly updatethedistribution with thewrongvalue.

Dynamic Analysisis neededor the dynamicthresholdingapproach.For this, onesimulateghe back-
ground/thresholdipdatingto obtaina steadystate. Onethencomputegx, andpy,q by assuming
somedistribution for the target, andthatthe targetsare sufiiciently transitoryto minimally impact
the steadystate.

Note that sincethe dynamicanalysisdepend=n the rate of changeof lighting, it is computedusing

multiple trainingruns. Sincetheserunsareof scenesvithout targets the annotatioris trivial.

Deriving the equationsfor the perpixel probabilitiesand the equilibrium analysisare beyond the
scopeof this paper Sincethe curvesthemselesprovide insightsinto the systemsensitvity, we present
a few exampleshere. Theresultshereextendthe examplesin [35] in thatthey includenew resultsof
applyingthe approacho analternatve backgroundipdatingusingthe up-davn (conditionalincrement)
modelof Equatiord.
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In Figure10 and11 we presenturvesthathighlight differencesn modelbehaior. In eachplot we
shav variousupdateapproachegparameterm thelegend)from Equation?2 andEquationd. Eachcurve
shaws pointsasthe overall detectionthreshold(T;) is variedfrom 0 to 31,— thresholdsigherthan31
werenotveryinteresting.TheseexamplesaredefinedusingthreeGaussians:

e g1 = N(127.133,5.605),
o go = N (132.859,98.256),
o g3 = N(72.0128,159.729).

Theseweredeterminedisingthe EM algorithmon someof thedatausedin Figure6. In thefirst example
(thegraphsof Figure10),we assumey; andg, arethe backgroundlistributionsandthatgs is thetarget
distribution, i.e. two backgroundgone of which is broad),and one target distribution with moderate
contrast.Theuppergraphof Figure10is the staticcase andlower graphis thedynamiccase.Thescale
onbothgraphss [10~4,1073] x [10~2,1071]. In this “easycase’it is clearthatthe dynamicmodeling
is significantlybetterandthat slowv updatego the backgroundverebetter The blendingvs. up-davn
comparison@aremixed, but the bestperformancesverefrom the up-dovn updates.Note thatbecause
oneof the two backgroundss quite broad,the x5 is relatively high, andit is easyto incorrectlylabel
oneof thoserandombackgroundrariationsasatarget.
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Figure10: LogLog plotsof ROC curvesfor aneasycase pnetargetandtwo backgrounds.

In themoredifficult casethe graphsof Figurell,we considerg; to bethebackgroundindg, andgs
to bethetargets.Again, uppergraphof Figure11lis thestaticcase andlower graphis thedynamiccase.
Thescaleonbothgraphss [10~7,1073] x [10~3, 10°]. In thismoredifficult casethedynamicmodeling
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is better just notasdramaticallyasin the simpleexample.Note how the pr5 is now muchlower asthe
backgrounds bettermodeled but the p,q is increasedgspeciallyfor largerthresholds.This difficult
casemodelsoneof thetargetsbeingvery closeto the backgrounda situationcommonfor mostpixelsin
low contrasior camouflagedargets. Note, however, thatevenin well camouflagedargets,somepixels
atary givenpointin time, will have high contrastandbe morelik e the easyexample. However, these
pixelswill be sparseandnot spatiallyconnectedThisis oneof thereasondehindthesuccessf QCC.
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Figurel1: LogLog plotsof ROC curvesfor thedifficult exampleof onebackgroundandtwo targets.

For static modeling, it is clearthat the overall performancds muchwealer thanfor the dynamic
modelingcase. As thesecurvesshaw, the alternatve up-dovn approachs often superiorto the more
commonblendingapproachFor thetwo staticcaseexamplesthe up-davn doesbetterfor very low py,
thoughthe resultsare mixed for larger p5 values. The up-davn approachs markedly betterover the
wholerangeof px4 valuesfor thedynamiccasewhichis thedomainin whichit wasdesignedo beused.

For aparticulardomain,usingrealdataandROC curvessimilarto thesewould allow oneto determine

the appropriatechoicesfor the blendingandthresholdparameter$or a backgroundsubtractionbased
technique.

6.2 RegionLevel Analysis

Having looked at the pixel level analysisand someexample ROC curvesthat canbe usedto setpa-
rametersjet us now look at how to generalizethis analysisto the region level. Thisis animportant
generalizatiorof the approachtakenin [35] — theregionlevel is whereLOTS andmary systemsegin
to distinguishbetweertargetsandnon-tagets.Theanalysisof thegeneraform of quasi-connectecom-
ponentsor regularconnectedomponent$ollowedby morphologyis, at presentfoo complex to pursue.
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Instead we considera slightly simplermodelof QCCwhich is a goodapproximatiorfor smalltargets
but ignoresthe non-uniformspatialgroupingthat would impactlarger targets. One of the adwvantages
of QCCis thatit permitsrelative straightforvardanalysis.Although morphologicabrocessings much
olderandhasarich mathematicabackgroundthe probabilityanalysigo obtainp,,q andps 4 for regions
processeavith morphologyremainselusive.

We developequationghattreatatargetregionashaving afixedsetof r pixelsin anunderlyingregion
of n pixels® Thatis, supposaherearen pixelsin the whole region andr pixels are associateavith
atamget(n > r). Let k4 bethe numberof pixelsthataretarget pixels that have beendetectedhence
(r — kq) isthenumberof missdetectegixels. Let k; bethenumberof pixelsthatarebackgroungixels
thathave beenincorrectlydetectedi.e. thenumberof falsealarms.

We definemiss detectionprobability (prm) andfalsealarm probability (p,f) at the region grouping
level asfollows

prm = ) pmd(r|RT)p(r|RT) (7
r=0

p = ra(r| BT)p(r| BT) (8)
r=0

wherep(r|RT) andp(r|RT) arethe conditionalprior distributionson how mary target pixelswill be
in theregion giventhereis a realtargetin the region, andgiventhereis not a realtargetin theregion,
respectiely.

For the threshold-with-hysteresitherearetwo thresholdscalled T andT”, with TH > T, In
thefollowing, superscriptshaw if the parameterarerelatedto the high or low thresholdgthey arenot
powers)andsubscriptshaow if they arerelatedto falsealarms(fa, detection(d) or missdetection(ml
Theterm CF representshe combinationsn choosek. With this we can derive the joint distribution

p(kfiba kh) kéa klf) as:
p(kl, K}, Ky, k) =
l 1
Cre (D™ ©
K h 1_.h
Oyl (1= Png)"™ (g = Pma) ™
K n—r—k!
: Cnf—r(l - p%a) Ki
k7 onhykh o b\ kL —kD
'Ckgf(pfa) "(Pra—rra)
with thejoint distribution of (k", k') givenas
K"K
p(kh7kl) = Z Z p(kaiila kh - kga kfbkl - kfi)
kh—0 kL —k"
wherek" = k} + k" is thenumberof pixelsthatarehigherthanthe high thresholdandk! = k} + k%

is thenumberof pixelsthatarehigherthanthelow threshold Obviously, k" < &!.

In QCC,we have two areathresholdscalled k", andk!, thatmustbe satisfiedto labela region asa
target. p(k" > kI k! > k! ) indicatesthe probability of how mary pixelsarehigherthank”, andhow
mary pixelsarehigherthank!, , wherewe requirek? < k! .

3The mathematicsn this sectionis a summarythe missingstepsare not difficult but requirea bit of effort to work out. For
brevity they arenotincluded.
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pa(r) = (kh>kh K>k |r)
- 3 ECIE
kh kh
pm(r) = 1—pd() (10)
ps(r) 2 (kh>kh K>k )

n
Z Z kh kl
L kh=kh,

Notethatwhile theseequationsaredeflnedfor thresholding-with-hysteresiasusedin QCC,if one
setghehighandlow thresholdd$o thesamevalue,they alsoapplyto singlethresholdgroupingandhence
couldbeusedin theanalysisof systemswith only asinglethreshold Also notethatwe arenotenforcing
connectvity, thusit is a goodmodelfor smalltargetsin QCC, which getlumpedinto a single parent
pixel or afew adjacenbnesbut not for very large but sparseregions. For this reasonwe only consider
moderatelysmalltargetsin theremainingdiscussion.

Usingthe above equationsanddatafrom theindividual pixel ROC analysigpresentedh the previous
sectionspnecangeneratdROC curvesfor regions. This doesnot includethe spatialanalysisof QCC,
but beginsto shav how someof the systemparametersncluding the minimum areasize andthe dual
thresholdslay a role in determiningthe MD/FA rates. In Figure 12 we considerthe region analysis
building on the pixel level resultsthatwere presentedn in Figurel1l,i.e. for a difficult casewith one
backgroundy; andtwo tametsgs, g3, wheregs is very closeto g;. The graphsconsiderfour system
parametersthelow thresholdthe highthresholdtheminimumlow thresholdregionsize K m L, andthe
minimum high thresholdregion size K m H. Thetarmgetsizeis modeledasa Gaussiardistribution with
p = 12,0 = 2. Weusefrequeny datafor targetsfrom realdata,wheretargetsoccurredn approximately
0.002% of theframes.Thetop graphof Figure12 shavs curveswhereasinglethresholds variedwithin
the curve andeachcune is a differentregion size Km L. Notethe scalesareradically differentfrom
the perpixel case—f107120,10°) x [107!°,1072]. The secondgraphof Figure 12 shavs curveswith
the low thresholdsetat 2, andthe high thresholdvarying (from right to left) from 2 to 18. Whenthe
high thresholds equalto low threshold the right mostpoint on eachcurve, it shavs the non-hysteresis
caseor singlethresholdcase Differentcurvesshow adifferentnumberof pointsrequiredaborve thehigh
threshold.Increasingherequirednumberof pixelsabose thehighthresholds better Thethird graphof
Figurel2 shaowvstheinteractionof thenumberof pixelsrequiredabove eachthreshold:within acurvethe
numberof pixelsabove thelow thresholdvaries(from right to left) from 2 to 14; eachcurve hasl, 2, 3
or 4 pixelsabove the highthreshold Overall, for this difficult casewe seethatthreshold-with-hysteresis
hassignificantaddedvalue— it allows ordersof magnitudereductionon false-alarnrateswith only a
minor changdn the missdetectiorrates.For theeasycasej.e. building from Figure10, the systemwas
alreadydoingwell andaddedbenefitof TWH is measurabléut notassignificant.

7 External SystemEvaluation

To supportthe evaluationof LOTS, datawascollectedusingomni-directionakensorst Ft. Benningin
scenario®f interesto the DARPA SmallUnit Operations— SituationalAwarenes$ystem(SUO-SAS)
program. Approximately70 hoursof omni-directionalvideo was collectedin the first evaluationand
another0 hoursin thesecondBoth setsincludebothsignificantamountf “targets”’andemptyscenes
for falsealarmevaluation. Atmosphericconditionsrangefrom light rain andwind, partly sunry and
windy to sunry with light breeze We notethatin mary of thesescenariodt is very difficult to detectand
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tracktargets,ascanbe seenin thetwo examplesof Figures2 and3. Readersanfind videoexamples’
of thetrackerin actionaswell asraw datafor testingat

http://www.eecs.lehigh.edu/"tboult/ TRACK/

Evaluationof this type of systemis non-trivial andsomavhat subjectve. Whenthereis significant
occlusionandcamouflagedargets,it is often hardto sayif atamgetshouldbevisible or not. It is also

4Notefor effective transmissioron thewebthe“results” areMPEGfiles which meanshey have losta smallamountof image

quality.
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Certainty> 0 Certainty> 1
Scendype | % Detect Pia | % Detect Pia
Indoor1 100% 1.00=~* 100% o*
Intersectiori 89% 1.8%* 89% o*
Intersectior? 87% 4.6F* 62% 0o*
Town Edge 95% 5.0C* 92% 1.8% 4
Forest 100% 3.3%~* 76% 0*
Field (sniper)| 100% 5.8%* 82% 5.56°
Mean 95% 3.61 * 84% 4.0E& °
Std.Da. 6% 1.91* 13% 7.5%5

Table 1: False alarm and Miss detection rate (per frame) of basic LOTS tracker as of Aug.
1998. False alarms are per frame, detection rate is the fraction of all targets. Across the
scenarios the number of targets ranged from 8 to 30, and in all but the indoor settings the
targets were generally at a distance of 20-50m (80-12 pixels on person). This is before lighting
algorithms and changes to background modeling and without adaptive parameter adjustments.
Main sources of false alarms were about 60% insignificant motions (e.g. leaves and bugs),
30% lighting & shadows. *A miss detection or false alarm rate of O resulted because in the
approximately 15000 frames per scenario that were evaluated, that type of event was not found.

not clearwhensomethings a falsealarm— e.g.,take the ambiguousasesof animals,insects,or the
emegenceof a new motion patternof brushthat might be worth investigating.Ratherthanpresenting
ourown evaluationwe reporton anexternalanalysiof LOTS, asof August1998.Thisevaluation [42],
wasdoneby researcherat the Institutefor DefenseAnalysis(IDA), wheretheir goalswereto seehow
well video suneillanceandmonitoringcouldbe usedto supportsmallunit operations.

The 1998scenariosncludeda shortindoor segment,two urban/streefintersection}scenesa town
perimetertown edgeanda nearbytree-line),two differentforestsettingsanda sniperin a grassfield.
For the forestand field scenesthe evaluationwas limited to a 2—4 minute batchlearning phasefor
acquiringthe multiple-backgroundsyhile the othershadat most30 secondf learning. No learning
basedn userfeedbaclof falsealarmswasallowed,thoughit is supportedy the system.

Thesummaryanalysiss shavn in Table1l. Almostall detectionsvereconsideredimmediate; with
only themostdifficult casegakinglongerthanonesecond.Theaveragenumberof framesevaluatedper
scenariovasapproximatelyl5,000(approximatelyeightminutes.)Falsealarmratesarepresentedhere
perframewhile theoriginal reportusedfalsealarmsperminute.

We point out that the evaluatorsoriginally labeledmary detectionsasfalsealarmsuntil they more
carefully analyzedhe video anddatalogs andfound they had missedtargetsthe systemhaddetected.
For example all rectanglesn Figure3 aretruedetectionsbut this maybedifficult to tell from theimage
becausesomeof the tamgetsare smallandof low contrast.In the forestsandfield scenesmostof the
missdetectionsveretargetswith low contrasimoving in areaswheretherewasoftenancillary motions
(i.e. wherethe systemhadmultiple backgroundsndthereforereducedsensitvity). In theintersection
scenestnostof the missedtargetswereeithertoo small (but with enoughcontrasthatthe humancould
seethem),or they werein areaswith ancillarymotionandmultiple backgroundsThe mainfalsealarms
in the town scenesvere comple lighting/shada effectswhile animals,bugsandsomebranchesvere
dominantfalsealarmsin theforestandfield scenes.

TheIDA evaluationsdid notincludeany of LOTS's reportedconfidencaneasuregthey werein the
output,but not considered)We took the detailedspreadshedtom their report,which shovedin which
framegargetsweredetectedandthenwentbackto thesystemoutputandincludedtheconfidencevalues
to producethe secondsetof columnsin Tablel. Thecomputationsvith confidencdevelsweredoneat
Lehigh (not by the independenévaluators) but werebasedon their scoringof whatwasa falsealarm
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andwhat wasa true detect. We also usedthe exact samesystemoutputvideo tapesproducedfor the
externalevaluation.

Theinitial evaluationandanalysisdid not allow for ary incrementalearningnor adaptve feedback
on falsealarms.Incrementalearningis intendedto handlefastchangesn lighting. Oncethe end-user
saidan effect wasa falsealarm,the secondarpackgroundtould accountor the lighting. Without that
feature,a large fraction of detectedfalsealarmswere smallto moderatesizedlocationswith lighting
relatedchanges(e.g. small sunpatchesor shadavs.) In a wide field of view, mary of theselighting
effects canproduceimageregionsthatlook like a personemeging from occlusionor a moving low-
contrastvehicle,which is why we intendedto useuserfeedbacko initially labelthemasfalsealarms.
The“ghosting” of targetswasalsonotedin their report,andthey too wereconsideredalsealarms.The
systemneededo be more automaticbecausemilitary usecannotsupportthat level of userfeedback.
This requiremented to additionalcleaningphasesin particularthe introductionof lighting algorithms
andthe useof theold-imageapproacho handlemid-termghosting.Our updatedsystems a component
of SUO-SASprogram(in a projectleadby CMU) that hasbeendeliveredfor long-termevaluationat
Ft. Benning. The new versionalsoincludes3D targetlocalizationasseenin Figure4. The new series
of evaluationincludesmultiple cameraconfigurationsand determinatiorof bothlocalizationaccurag
anddetection/alsealarmrates.Thepreliminarydataanalysifrom onecamerashoveda (still unofficial)
localizationof within 2mandadecrease thefalsealarmrate. Formalresultsareexpectedo bereleased
in 2001.

This latestversionof LOTS is beingusedasa componenin the DoD SmartSensotWeb program
whereit is currentlybeingappliedin a moreurbansetting. Developmentof an 8—14microninfra-red
versionof the systemis currentlyundervay.

8 Conclusions

Detectionandtrackingof camouflagedargetsrequireshbothsensitvity androbustnessThis papershav
how we have takensuchsystem®ut of thelab andinto thewoods.It presenteénoverviewv of theLOTS
systemthat hasdemonstratethe ability to track thesetargetsand describedsomeof its uniquedesign
choices.

The major contributionsinclude a new approachto groupingcalled quasi-connectedomponents,
which wasintroducedin Section4. QCC implementsa two level threshold-with-hysteresispproach
thatfills very smallgapsevenif thereis no connectionandfills largergapsif thereis a bridgeof pixels
above the low thresholdconnectingthemto somethingabove the high threshold. This approachhas
beenusedin edgedetectorsandprovidesa uniqueandefficient approacHor its usein region detection
for visual suneillancesystems.The implementatiompresenteds significantlyfasterthanprevious 2D
region growing approaches.

The paperdiscussedhe adwvantageof a multiple-backgroundapproachwhich hasbeenusedby
others,but with the novel featuresof a new conditionalincrementbackgroundnodelingfor very slov
updates(Section3.1), the additionsof the non-blendedackgroundmagesthat handle“ghosts” and
lighting changedetectionalgorithms(Sections).

Section6 presented discussioron the erroranalysisof the region detectionanduseof ROC curves
to helpunderstandhe performanceof anddetermingparameter$or the changedetectionsubsystemilt
presentedlatashaving how missdetectionandfalsealarmsratesvary at the pixel level, andcompared
thewell known blendingapproachwith the proposectonditionalincrementbackgroundnodelingap-
proach. We thenshowved how, asan approximationto QCC for smallregions, the pixel level analysis
couldbe extendedinto a region level analysis.The ROC curvesgeneratedrom this new erroranalysis
clearly shawv the advantageof thresholding-with-hysterester difficult visual surweillanceproblems.
This theoreticalanalysisconfirmsthe advantage®f QCC thathadbeenobsenedin practice,it allows
ordersof magnitudeeductionon false-alarnrateswith only a minor changen the missdetectiorrates.
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Thepapethendiscussedheoverallperformancef thesystemasmeasuredby anexternalevaluation
group. While the paperhasshaown thesetechniquesn the context of low contrastand camouflaged
targets,the externalevaluationsshav thattheseideascanbe appliedto otherlessdemandinglomains.
While the systemrepresents majoradvancementtherearemary challengesemainingin this domain
including: bettertechniquegor distinguishingsignificantmotionsfrom realbut non-interestingnotions,
targetidentification,bettermaintenancef targetidentity over occlusionsfull 24 hoursperday, 7 days
perweekoperationandmulti-sensoffusion.

Our work, aswell asthat of Foresti([?], suggestghat for visual suneillancein domainswith low
contrastargetsmoving in changingervironmentswith high occlusionwe canconcludewith threshold-
ing with hysteresiandmulti-level analysisplay a majorrole in the developmentof effective solutions.
Giventhatquasi-connectecomponentss notonly effective, but computationallynexpensve,we expect
techniquedike QCCwill becomea majorcomponentf futurevisualsurweillancesystems.
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Changes

Hereis ashortlist of the changesnade(directly tied to commentsdy reviewers).

¢ (R1) organizatiorof thepapercouldbeimproved(we addedhetutorial stuff to the Introductionand
reducedheabstracetc.)

¢ (R1) Introductionand Backgroundsectionscould be shortenedbasedon otherreferees comments
we neededo addmaterialto theintro — Backgroundvasshortened)

¢ (R1) Titles of figuresaretoo long (addressed)

¢ (R1) Evaluationsectioncouldbe moreemphasizeth the paperto shav resultsandmorediscussion
of field test(would've significantlyincreasedengthof paper soit wasnotdone.)

¢ (R2) possiblynot enoughintroductorymaterialfor the non-specialis{tutorial sectionin Intro ad-
dresseshis.)

¢ (R2) paperreliestoo heasily on [29] GaoBoult Coetzeeand Ramesh- shouldmake the paperas
independentf [29] aspossible(wasmademoreindependent.)

¢ (R2) needmoredetailsafter: More importantly the systemaugmentghe changedetectionwith a
lighting analysis:(addressethere.)

¢ (R2)figuresl1-13legendstoo small(addressed)
¢ (R2) brief qualitative analysisof thetechnique®f *general*applicability (seeconclusion)

¢ (R3) no comparisonof groupingwith existing methods(comparisornwith morphologyscattered
throughouthe paper)

¢ (R3)clearerclaimsin theabstractandintro (addressed)
¢ (R3) removing somefiguresandmakingthe remainingonesmoreunderstandabl@ddressed)
¢ (R3) polishingthe English(done)

¢ (R3) Major modificationso mathematicalormulationsandexplanationof resultsshouldbe clearer
andeasielto read(seelaterclarifications)

¢ (R3) Conclusionsarefar too brief — needmuchmore detail — possiblyincluding new subsections
referringto variousclaims

¢ (R3)all figure captionsaretoo long (addressed)

¢ (R3) Thereis no prior referenceto the thresholdparameteiG which is discussechere: The two
parametersf mostsignificantinterestarethethresholdG and(addressed)

¢ (R3) pageb: computationatostfor windowed meanandvariancearegivenfor grantedandshould
be explained(no computationatostis given,only storagecost.)

¢ (R3) page5: greyscaledistancevs. morestandardviahalanobigdistanceshouldbe justified (com-
mentsadded)

¢ (R3) pageb: needto cite referencedor this sentencein somesystemsjncludingthe earlyimple-
mentationof LOTS, backgroundipdatesiependean feedbackrom upperlayers.(deleted)

¢ (R3) page6: The claim that the “up-down model requireslesscomputation”is not justified (we
thoughtit wasobviousthatup-davn-modelusesf testandadd,the otherrequiresa subtr two mults
andanadd)

¢ (R3) In the Thresholdingsubsectiongquation(5) on page6 — may needa moduloon |hs (added
absolutevalue)
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¢ (R3)pager: equatiory of [25] needgo beexpandedincludetheequatioror expandtheexplanation)
(theequationwasaddedandexplained)

¢ (R3) page7: MOG backgroundnodelsare more of a corvenience... notjustified (removed sen-
tences)

¢ (R3)page8: Thefigure(9) inadwertantlyappearedbeforefigure8, disassociating from thedescrip-
tion. Descriptionmodifiedto addresshis.

¢ (R3) pagel0: (addeda higherlevel processingsxampleto the sentence)

¢ (R3) pagell: commentaddedo highlightgeospatialocalization— section6 rewritten—

¢ (R3) pagel2: figure 11 simply announcedcorrectecaddedo text)

¢ (R3) pagel2: The sentence:n eachROC curwe, the global thresholdwas varied from 0 to 31,
although... shouldexplainwhy 0 to 31 wasused. (thresholdgreaterthan31 aregenerallyoff the
graphs.)

¢ (R3) pagel3: formulas(6) through(12) hardto understandaddressed)

¢ (R3) usualmarathorcaptions- It's a questionof style. We believe figure captionsshouldbe stand
aloneandnot say“seetext for discussiori. Sincemultiple refereessuggestedhe changewe have
capitulated.

¢ (R3) pagel5: enhanceavith imagesof “small targets”and“low contrasbobjects”the paragraphhat
begins: We point out thatthe evaluators... (sentenceaddedto addresghis which refersto a prior
figure.)



