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Abstract

Autonomousvideosurveillanceandmonitoringof humansubjectsin videohasa rich history. Many
deployedsystemsare able to reliably track humanmotion in indoor and controlled outdoorenviron-
ments,e.g. parking lots and university campuses.A challengingdomainof vital military importance
is thesurveillanceof non-cooperativeandcamouflagedtargetswithin clutteredoutdoorsettings.These
situationsrequirebothsensitivityanda verywidefieldof view andthereforearea natural applicationof
omni-directionalvideo.

Fundamentally, targetfindingis a changedetectionproblem.Detectionof camouflagedandadversar-
ial targetsimpliestheneedfor extremesensitivity. Unfortunately, blind change detectionin woodsand
fieldsmayleadto a high fractionof falsealarms,sincenatural scenemotionandlighting changespro-
ducehighlydynamicscenes.Naturally, thisdesire for highsensitivityleadsto a directtradeoff between
missdetectionsandfalsealarms.

Thispaperdiscussesthecurrentstate-of-the-artin video-basedtarget detection,includingan anal-
ysisof backgroundadaptationtechniques. Theprimary focusof the paper is the LehighOmnidirec-
tional Tracking System(LOTS)andits components.Thisincludesadaptivemulti-backgroundmodeling,
quasi-connectedcomponents(a novel approach to spatio-temporal grouping),backgroundsubtraction
analyses,andanoverall systemevaluation.

1 Intr oduction
Therehave beenmany visual surveillanceandtrackingsystemsdevelopedwith a variety of software
andhardwarearchitectures.We first presenta brief introductionto visualsurveillancesystemsandtheir
overall systemarchitecture.The systemarchitectureoverview will provide a framework in which to
discussprior work andthe domainconstraints.Thuscitationsto anddiscussionsof relatedwork are
omitted in this secctionbut but canbe found in the section1.3 and throughoutthe remainderof the
paper. Thissectionalsodefinessomeof thetermsandbasicconceptsusedin theremainderof thepaper.
Following the fundamentals,we discussdifficulties in section1.2 andthenprovide anoverview of the
remainderof thepaperin section1.3.Thosealreadyfamiliarwith thefield maywishto skip to thepaper
overview.�
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1.1 Visual SurveillanceFundamentals
The visual surveillanceproblempertainsto the the useof imagingsensorsto monitor the activity of
targetsin a scene.For example,monitoringhumanactivity in office environmentsvia CCTV cameras,
performingsurveillanceon vehiclesatnight with long-wave infraredsensors,or trackingsoldiersin the
woodsusingomnidirectionalvideoareall visualsurveillanceproblems.

Detection Grouping Tracking

FilteringClassification*Sensor control* Model update

Acquisition

Figure1: Logicaldecompositionandcontrolflow of avisualsurveillanceandtrackingsystem.

A simpleview of the visual surveillanceproblemhastwo major subproblems;targetsmustfirst be
detectedandthentracked. Fromanarchitecturepoint of view, many visualsurveillancesystemsfurther
decomposetheproblemresultingin uptoeightmajorstages:acquisition, detection,grouping, track-
ing, filtering, classification,updating models,andsensorcontrol. A functionaldecompositionof a
systemcanbeseenin Figure1. In somesystems,afew of thesestagesmaybeperformedsimultaneously
or maybeomitted(thosemarkedwith *’ s),but for illustrativepurposes,wewill considereachstagesep-
arately. Wewill briefly review thesefundamentalstepsof visualsurveillancein thecontext of areference
subtractionparadigm.Notethatthis is a verysimplifiedview of thesystemandin theremainderof the
paper, difficultiesandlimitationsinherentin thissimpleview will bediscussedandovercome.

Undetectedtargetscannotbetracked.Therefore,thefirst stepsin a visualsurveillancesystemareac-
quisitionof animageanddetection(referredto in thispaperandotherliterature,asthechangedetection
phase).Thesimplestdetectorbasedonthereferencesubtractionmodelusesasinglereferenceimage

�
,

which is alsoknown asa backgroundimage. The referenceimageis usedto captureinformationthat
is “unimportant”(static)in a scene.Thechief advantageof a referencemodelingapproachis thatthere
is no needto explicitly modeleitherthegeometryor photometryof a scene.This not only significantly
simplifiesthesystem’s operation,but allows it to operatein a wide varietyof environmentswithout the
needfor complex calibrationroutines.

Referencemodelsoperateon a verysimpleprinciple.Supposewepointa cameraata scenewewish
to monitorandassumeno targetsarecurrentlypopulatingthescene.If we save this capturedimageas
our referenceimage

�
, thenany changein this scenecanbe detectedby simply performinga pixel-

by-pixel comparisonbetweenour referenceimage
�

andany new incomingimage. Supposewe have
a new imageof our scene� that containsa target of interest. Then,we constructa differenceimage,����� �
	 � � , whereeachpixel of

�
is theabsolutevalueof thedifferencebetweencorrespondingpixels

of
�

and � . Therefore,eachpixel of
�

that is greaterthansomenoise-basedthreshold� representsa
pixel thathaschangeddueto thepresenceof atarget.In thispaper, andin muchof thevisualsurveillance
literature,suchpixelsarecalledtarget pixels. Thesetargetpixelsaretheoutputof thedetectionphase.
Naturally, thereis a sensitivity tradeoff correspondingto differentchoicesof � . It mustbehigh enough
to ignorenoise,but low enoughto detecttargets.Therearetwo primaryapproachestakento reference
modeling. Oneadaptsthe referenceimageover time by blendinginformationandstatisticsextracted
from the many images.Theothermethodusesthe two mostrecentframesfor building thedifference
image

�
. Both techniqueshave theirown advantagesanddisadvantages.

Let usassumeoursimpletrackerhascompletedthedetectionstage,andhasmovedinto thegrouping
stage.It is the goalof this stageto assigna label to eachpotentialtargetpixel. Ideally, all pixels that
belongto thesamephysicaltargetwill sharethesamelabel. Themostbasicform of groupingis simple
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connectedcomponents— theassignmentof thesamelabeltoadjacent1 pixels.Becausethisstageis early
in thesystem,theseuniformly labeledandwell-connectedpixel regionsarenotnecessarilydeemedtrue
targets. They areoften referredto with the lessdescriptive term blobs. Somesystems“clean” these
blobsby performingbinary morphology. This helpseliminatevery small regions,which areassumed
to be noise,andconnectstogetherregionswith small separations.Unfortunatelyit alsodeletessmall
targets.

In thetrackingphase,eachblobis associatedwith zeroor moreblobscomputedfrompreviousframes.
Eachsetof spatio-temporalgroupings,or tracks, describesa target’sbehavior andpropertiesover time.
Themostrudimentaryupdateconsistsof associatingblobsthateitheroverlapspatiallywith blobsfrom
previousframes,or have centroidsthatarewithin someproximity thresholdof eachother. Ideally, each
track correspondsto a single moving target as it movesthrougha scene,even if the target becomes
temporarilyoccluded(partiallyor fully).

In the filtering stage,additional testingis performedon the target regions to insurethat they are
targets.Processingcanvary from thesimplisticdeletionof targetswithout a minimal numberof pixels
ontarget,to themorecomplex methodsfor detectingblobsthatresultfrom reflections,shadows,or other
illuminationchanges.For example,it is commonfor humantrackersto assumethattheir targetswill be
upright.Suchtrackersmayeliminateblobsthatdonotfit thisdescription.

Many high-level surveillancesystemsaugmenttheir trackerswith target recognitionroutines. This
optionalclassificationstageusually follows or is concurrentwith filtering. It is optional in the sense
thatmany visual trackers,includingLOTS,do not have this component.Naturally, thegranularityand
typeof classificationvary acrossdifferentsystems.For example,somesystemsmay try to distinguish
betweenvehicleandnon-vehicletargets.Othersmayattemptto identify a particulartarget’s identity, or
simply try to decideif thetargethaspreviouslybeentracked.

In themodelupdatestage,thesystemupdatesits internalmodelsto incorporateinformationgained
in thenew frame. This might includeadjustingvariousthresholds,adjustingthebackgroundmodel,or
updatingother internalsystemvariables. Sincein many systemstherecanbe several parametersper
pixel, thereareoftenaverylargenumberof parametersto consider. Creatingasystemthatbothproperly
andrapidlyself-adaptsits internalmodelis perhapsthelargestchallengefacedby thevisualsurveillance
community.

Finally, asa resultof a modelupdate,a systemmaydecideto adapttheincomingvideostreamin the
sensorcontrol stage.Simpleupdatesmaybe, for instance,simply changingthe brightnessor contrast
of thevideo. An active vision systemmight cuea pan-tilt-zoomcamerasothat it mayfollow a tracked
target.

1.2 Difficulties
Wenow briefly touchuponsomeof thedifficultiesfacedby theabovetrackerandeventhemoststate-of-
the-arttrackingsystems.The fundamentaldifficulty of changedetection,naturally, lies in the fact that
scenes,evenin controlledenvironments,areundergoingcontinualchange.While adaptingto complex
lighting changesis trivial for the humanvisual system,it is a very challengingproblemfor computer
visionsystem.Changesin theenvironment’s lighting, targetshadows,andsensorartifactssuchasauto-
gaincorrectioncanchangetheoverall appearanceof seemingly“static” scenes.Themeasuredimages
changesignificantly, the systemmust then decideit is not an interestingchange. In lesscontrolled
environments,outdoorsin particular, scenesaremuchmoredynamicandthereforeignoringinsignificant
changesis muchmoredifficult. Naturalmotion,suchasmovingcloudsandtreebranchesposeadditional
difficulties.

1Thetwo mostcommonadjacency measuresarethe four-connectednessandtheeight-connectedness. In four-connectedness,
a particularpixel is consideredadjacentonly to pixels eitherdirectly above, below, to the left or to the right of it. In eight-
connectedness,all surroundingpixelssharingeitheranedgeor acornerwith aparticularpixel areconsideredneighbors.



DRAFT DRAFT Into theWoods...to appeartheProceedingof theIEEE,Oct2001DRAFT Page4

Whentargetsareactively trying to avoid detection,systemsarerequiredto constantlywatchareas
thatafford trespassersreasonablecoverandconcealment.By definition,suchareashavelimited distance
visibility with significantocclusionand clutter. Furthermore,targetsof interestgenerallymove in a
stop-and-gomannerandattemptto concealthemselveswithin the cover, usingcamouflageto further
reducetheir visibility. The combinedresultof limited distancevisibility andsmall target/background
differentiationseverely limits theusefulnessof stop-and-stareapproachesusingpan-tilt-zoomcameras.
Becauseamisseddetectioncanbe,literally, deadly, asystemslevel approachis required.Theproperties
of eachsystemcomponentmustbecarefullyconsidered,optimized,andintegrated— fromsensoroptics,
to operatingsystemcharacteristics,to the userinterface(UI). As the paperwill show, thesesituations
call for a verysensitive systemwith a verywide field of view – andhencethey area naturalapplication
for omni-directionalvideosurveillanceandmonitoring.

All systemsthat build the referencemodelby temporalblendinghave the problemthat targetsthat
arestationaryfor long periodsof time eventuallywill becomepartof thereference.Whenthesetargets
moveon,asetof targetpixelscausedby theabsenceof thetargetsgeneratewhatareoftencalledghosts.
For example,carscommonlygenerateghosttargetsin parkinglot scenarios.

Whentargetsaresufficiently distant,they generateindependentblobs.However, wheneithertargets
or their shadowscauseocclusion,splittingblobsinto independenttargets,or regrouping,becomesmore
difficult. Takethesimpleexampleof anofficeenvironmentin whichtwo peopleapproacheachotherand
shakehands.Two independentblobsmaybecomeone,andthenseparateagain.For asystemto properly
keepa blob pertarget,higher-level reasoningmustsomehow beincorporatedinto thesystem.Tracking
alsobecomesmoredifficult astargetblobscollide anddecompose.If blobsmergeandlatersplit, it can
bedifficult to determineto whichoriginal trackeachblobbelongs.

1.3 Paper Overview
This paperdiscussesthe issuesrelatedin taking the simplereferencemodelbasedapproachto visual
surveillancesystemsoutof thelabandinto thewoods— developingastate-of-the-artsystemcapableof
detectingandtrackingsmall,low contrastandcamouflagedtargetsin complex outdoorsettings.For this
domain,thedetectionphaseis crucial; if targetsarenot detectedtrackingis difficult if not impossible.
Detectionis alsoanareawherethedomainconstraintsmake this moredifficult thanthesituationscon-
sideredin prior work. For example,Figure2 shows a scenewith a sniperin thegrass(detectedregion
magnified).Obviously, thecamouflageis quitegood,but a sensitive motionvision basedtrackingalgo-
rithm with carefulbackgrounddifferencingrevealsthesniper’slocation.Frame-to-framemotionis small
— a goodsnipermaycrawl at undera tenthof a meterperminuteandbemotionlessfor minutesat a
time. A videoof thissniperbeingtrackedby theLehighOmni-directionalTrackingSystem(LOTS)[1, 2]
canbefoundathttp://www.eecs.lehigh.edu/˜tboult/ TRACK.

Thenext sectionof thepaperreviews thedomainconstraintsandanalyzeshow existing techniques
addresstheseconstraints.Becausecamouflagedtargetsin outdoorscenesareverychallenging,weshall
seethat much of the state-of-the-artdoesnot directly apply. Section3 discussestechniquesfor the
changedetectionsubsystems.This is followed by a sectiondiscussinggroupingandpresentsquasi-
connectedcomponents(QCC)which is anovel approachof performingspatio-temporalgrouping.QCC
combinesgapfilling, thresholding-with-hysteresisandspatio-temporalregion merging/cleaning.Then
in Section5, webriefly review thecomponentsthatarerequiredfor asuccessfulVideoSurveillanceand
Monitoring(VSAM) systemto operatein thewoods.This includestracking,targetgeolocation,network
communicationand userinterfaceissues. Becauseof the camouflageand occlusionof this domain,
LOTSdoesnotaddresstargetidentification/classification,andthereforeit is notdiscussedin thispaper.

While the problemof trackingcamouflagedtargetsis, hopefully, somethingonly a few peoplewill
ever have to consider, thechallengesthis problempresentsrequiresubstantialadvancesin surveillance
systemsensitivity thatcanbeappliedin many otherdomains.It is interestingto notethatForesti,[3],
while researchingsurveillancesystemsfor “varying badly illuminated outdoorenvironments”devel-
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Figure 2: Tracking a sniper moving in the grass – the two boxes approximately cover his upper
and lower body (right to left). In a single frame, as is shown here, the sniper is virtually invisible,
even though he is only between 3m-5m away.

opedmany techniquessimilar to thosepresentedherein.While therearemany differencesin thedetail,
Forestiindependentlyandconcurrently, foundthatsurveillancein challengingdomainsrequireschange
detectioncombiningthresholding-with-hysteresiswith a two-level spatialanalysis.As we describeour
system,wewill oftencomebackto compareourapproachwith thatof Foresti.

After reviewing theoverallsystem,wethenreview oureffortsin theanalysisof thesetypesof systems
andhow one candeterminethe propersystemparameters.In particular, in Section6 we presentan
erroranalysisat thepixel andregion level thatquantifiessomeof theadvantagesof QCC.Theanalysis
includesrelatingthepixel-level errorsto region-level errorsfor both thesingle-level thresholdandthe
thresholding-with-hysteresisapproach.We endwith a summaryof anexternalevaluationof theLOTS
systemperformedby theInstitutefor DefenseAnalysisandtheongoingapplications/experimentswithin
military settings.

Theprimarycontributionsof thisresearcharethedevelopmentof theQCCapproachto grouping,the
analysisof errorsandtheapproachto parametersetting.

2 Background and Constraints
Theprimarygoalof thispaperis to discusstheproblemof detectingandtrackingpotentiallyadversarial
targetsin a perimetersecuritysetting,i.e. outdooroperationin moderateto high cover areas.Thehigh
clutter andcamouflagemakesimagefeaturesdifficult to use. We have found only a few otherpapers
within thevision andimageprocessingcommunitythataddresstargetsin camouflage,[4], andmodels
of camouflage,[5]. While [4] addressesdetectionof peoplein camouflage,it doesso by finding a
particularsimpleclassof “smoothconvex intensity features”that requiresthousandsof pixels on the
target’s non-camouflagedface. The otherwork, e.g.[5], developscomputationalmodelsof the signal
strengththat exists in an imageof camouflagedtargets,anddoesnot addresshow to detecttargetsin
camouflage.
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This domainof application,low contrastor camouflagetargetsin high clutter, significantlyrestricts
thetechniquesthatcanbeapplied.Someof theconstraints,andtheir implicationsincludethefollowing.� Outdoorlighting is naturallyandcontinuallyvarying. The systemmustbe robust enoughnot to

generatefalsedetectionscausedby sunlightfilteredthroughtreesandintermittentcloudcover.� Trees,brushandcloudsall move.While maintainingsensitivity, thesystemmustincludealgorithms
to helpdistinguishthese“insignificant” motionsfrom realtargetmotions.� Targetsneedto bedetectedquickly, whenthey arestill verysmallanddistant,e.g.about10-20pixels
on targetor lessthanonehundredthof a percent(under
�� 
���� ) of theimage.� Targetsusecamouflageto blendin, sothesystemmustbeverysensitive.Sincepartsof thetargetwill
oftenmatchthebackground,fragmentationis expected.Largeamountsof occlusioncauseadditional
fragmentation.� Many targetswill moveslowly. Imagevelocitiesof under
���� pixelsperframearetypicalwith some
targetsan orderof magnitudeslower. Sometargetswill try very hardto blendinto the motion of
the trees/brush.Therefore,frame-to-framedifferencingis of limited value. Furthermore,onemust
insurethattemporaladaptionschemesdonotcausetheblendingof slow targetsinto thebackground.� Occlusion,especiallyin woodedareasis verysignificant;anaveragevisibility distancein moderate
woodsis under50 meters.The directionsof targets’ motion areonly slightly constrainedandthe
entireareamustbewatched.Combined,thesesuggesttheneedfor averywidefield of view (FOV).� Targetsconsistprimarilyof humansandoccasionallyvehicles.Targetswill bepartiallyoccludedand,
in general,will notbe“upright” or isolated.Thus,labelingof targetsbasedonsimpleshape,scaleor
orientationmodelsis not likely to besuccessful.� Thealgorithmsneedtobereal-timeandsuitablefor useonlow cost,low power, embeddedCommon-
off-the-shelf(COTS)systems.

Visualsurveillancehasbeenstudiedfor decadeswith recentmajor focusedefforts in theUS, spon-
soredby DARPA, andEuropesponsoredby ESPRIT. Thebulk of theprior work hasconsideredindoor
or morestructuredurbansettingswith relatively largetargetshaving hundredsor thousandsof pixelson
target,within scenesof mediumto highcontrast.We verybriefly survey someof this existingwork and
statehow thedomainconstraintsimpactthoseapproaches.In additionto thepaperscited,agoodreview
of many state-of-the-artvisual surveillancesystemscanbe found in the August2000specialissueof
theIEEETransactionson PatternAnalysisandMachineIntelligencededicatedto VideoSurveillanceas
well asrecentIEEEWorkshopsonVisualSurveillance(1998,1999,2000).

Therehasbeenconsiderablework on feature-based,edge-basedor boundary-basedtracking tech-
niques,e.g [6, 7, 8, 9]. However, for our domain, the targets’ small size, deformationsand nearly
continualpartial occlusionslimit theapplicabilityof feature-basedapproaches.Using featuresto help
initialize a strongermodelis a powerful trackingtechniquethathasbeenusedby many researchers,e.g.
with weakmodelsfor peoplein [10, 11, 12, 13, 14] andstrongmodelsfor vehiclesin [8, 9]. Models
permitrestrictingthesearchareafor likely features,therebyallowing increasedsensitivity without sig-
nificantlyincreasingthechancefor falsealarms.However, thesesystemsrequirebothareasonablylarge
numberof pixelson targetandmodelinitialization.

Theissueof modelinitialization is evenmoreof a limitation for work on trackingusingdeformable
models,e.g. [6, 7, 15], wherethe initialization is requiredto be quite closeto the target outline. The
deformablemodelsareoften far too expensive for seriousreal-timetracking. For example[7] used������������� imagesandneeded16,000processorsto achieve real-timeperformance,while [15] needed
significantpreprocessingpersceneandcouldnot handlechangingillumination. For somedomains,the
initialization (andeven modeltracking)is simplified by the useof color. For example,in [16] andin
numerousfacetrackingsystems,skin color is critical to bothdetectionandtracking.For ouradversarial
targets,color is not likely to contributeto tracking. Furthermore,thesealgorithmsmusteventuallyrun
24-7usingthermalor intensifiedimagery, bothof whicharemonochromatic.
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Anotherclassof techniquesusesoptic flow, but few, if any of thesetechniquescanhandletheslow
motionsandsmall sizeof our targets.Many usecorrelationor sum-of-squared-differences(SSD)over
windows [17]. Thesewill not work well with the small targets,largeamountsof occlusionandtarget
deformations.Othersusefeature-basedoptic flow, computingandtrackingfeaturesover time, e.g. [8,
18, 19]. TheASSET-2 system,which tracksmoving objectsagainsta moving background[8] utilizes
a feature-basedoptic flow. ASSET-2 usescustomhardwareanda PowerPC-basedimageprocessing
systemto achieveframe-rateperformance.Theexampletracksprovidedby theauthorsareeithermotor
vehiclesor aircraftandhave many hundredsof pixelson target. More recently, Iketaniet.al. explicitly
addressedbackgroundsthat undergo motion [18, 19], with an optic flow basedtechniquethat usesa
pathvotingprocessto detectregionsof similarmeanflow. It is assumed,however, thatthetargetobject’s
motioncanbedescribedwith aconstantvector. Againlargetargetswith minimalocclusionareimplicitly
presumed.

Therehavebeenmany paperson trackingandanalyzinghumanmotion,e.g.[10, 11, 12, 13, 14, 20].
Motion parameteranalysishasalsobeenusedto distinguishtargets.For example,[21] usesmotionpa-
rametersastheprimarymethodto distinguishbetweenhumanandvehicle.However, it is presumedthat
targetsarenotoccludedandconsistof many hundredsor thousandsof pixels.This limits its applicability
in our domain.In [10], a systemis presentedthatusesbothmotionparametersandtargetsize/shapein-
formationto classifytargetsashuman,bird, rabbit,fox or squirrel.Thepapermentionssmall(25pixel)
targets,but usessizefor classification,resultingin suchsmall targetsbeingclassifiedasbirds. Other
relatedresearchhasworkedon developingtargetmotionestimators,e.g. [22, 23, 24, 25]. These,how-
ever, arefocusedmoreonestimatingmodels(usuallysmooth,periodicor planarmodels)of themoving
targets. However, areasof cover generallyproduceapparenttarget motion that is neithersmoothnor
planar. Theideasof target identificationbasedon motionpatternsmight begeneralizedto apply in our
domain.However, thesegmentation/trackingprocessesusedin theseapproachesareinsufficient for the
complex clutterandoutdoorvariationsinherentto thedomain.Their ideasmight beappliedaftermore
sophisticateddetectionandframe-to-framematchingandmay be useful for further analysisof target
type.

Although therehasbeenconsiderableefforts in the literaturein frame-to-framematching,feature-
basedtechniques,motionestimation,andeventargetidentification,themajorityof papershave focused
on issuesotherthanchangedetection.Hence,thedetection/groupingtechniquesof suchsystemsmay
work well for indoor or simpleurbanscenes,but arenot likely to be sensitive androbust enoughfor
handlingcamouflagedadversarialtargets.To reiterate,thedetectionphaseis crucial; undetectedtargets
cannotbe tracked. Detectionis alsoan areawherethe domainconstraintsmake trackingmorediffi-
cult thanin thedomainsconsideredin (almostall of the)pastpapers.As a result,muchof this paper
(andoursystem’scomputationaleffort) concentrateson thedetectionphase.Becauseof thecamouflage
andocclusion,target identificationis not attemptedandtrackingis limited to matchingconsistentspa-
tial/temporalmotions. However, the sensitive detection/groupingapproachpresentedhereincould be
usedasthe first stagein many otherdomains. If needed,the systemparameterscanbe set to reduce
sensitivity.

Thefinal domainconstraintto consideris theneedfor a wide field of view. This usuallyis accom-
plishedwith eithermultiple camerasor a pan-tilt-zoomcamera.While thetrackingalgorithmpresented
hereincanbeappliedto a traditionalcamera,it wasdevelopedfor usewith theomni-directionalcamera
developedby ShreeNayar[26], that usesa singlecameraandmirrors to capturea full viewing hemi-
sphereor more. This cameraproducesan imagethatseesin all directions(e.g. seeFigure2) with an
opticalsystemthatwasdesignedsothat targetscouldbeunwarpedinto a perspectively correct,normal
lookingimage(seeFigure4.) Considerablework alsoexistsin theareaof omni-directionalsystemswith
a recentIEEEWorkshopin 2000dedicatedto thetopic. We have focusedon thecommerciallyavailable
paracamera[27] becauseit permitsviewing averylargeFOV usingonly acommerciallyavailablesmall,
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Figure 3: This image shows the tracking of
soldiers moving in the woods at Ft. Benning,
GA. Each box is on a moving target, and
only the small white box on the lower left
shows a target at significant distance (about
20m). LOTS can detect soldiers at 30m–
40m, but this example uses closer targets
so the reader can actually see them. :-)

Figure 4: Example showing LOTS interface for the Department of
Defense (DoD) Smart Sensor Web program. Left is an unwarp-
ing of the paraimage into a pair of panoramic images. The right
shows unwarpings of the top four targets, with only two targets in
the scene (one entering a building). The map shows the targets’
current and recent location history (larger dots are more recent.)
Dot color matches the window color showing that target. See Sec-
tion 5 for more discussion.

single,stationarycamerawith a singlevirtual viewpoint. Sincea primarygoalwastheability to track
camouflagedsoldiersmoving in woodsandfields,theomni-directionalimagingwasa critical feature–
in woods,visibility distanceis limited, usuallyto therange30-50meters.

It is worth noting that the “spatial resolution”of the paraimageis not uniform. While it mayseem
counterintuitive,thespatialresolutionof theparaimagesis greatestalongthehorizon,justwhereobjects
aremostdistant.In [28] we show thatalongthehorizon,theresolutionof anomnicamerais 4.2 pixels
perhorizontaldegree,which is aboutthe sameasthreetraditionalcameraswith 150 degreeFOV that
would beneededto watchthesameregion. With eitheranomni-directionalcameraor many traditional
cameras,objectsto betrackedin a widefield of view will coveronly asmallnumberof pixels.With 4.2
pixelsperdegree,atargetof dimension0.5mby 2.0mat50mis approximatelytwo pixelsby eightpixels,
yielding 16 pixelsper target. At 30m, it is 32 pixels. Thenumbersstatedherepresumeideal imaging
of the target,while actualimaging,“edge” effectsandpartialpixel fills reducethenumberof effective
pixelson target. Whenoneconsidersthat the targetswill alsobewearingcamouflage,asin Figures2
and3, it is clearthat trackingin sucha wide field of view requirestheprocessingof thefull resolution
( ��� 
!�"�#��
 ) imagewith a sensitive,yet robust,algorithm.

In the next two sections,we review in detail the changedetectionandgroupingcomponentsof the
LOTSsystem.To illustratetheeffectivenessof LOTS,wewill presentrunningexamplesbasedonsome
of themostdifficult typesof changedetection— thedetectionandtrackingof a sniper.

3 ChangeDetection
Oneof themostcommontypesof changedetectionis basedon subtractionof a backgroundmodel(or
models)followedby thresholding.At the coreof this type of changedetectionis the modelingof an
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expectedvalueof apixel. Thissectiondiscussessaidtechniques.
An underlyingassumptionof many earlybackgroundmodelingapproacheswasthatasingleGaussian

wouldbesufficientto modelapixel value.Sincedifferentobjectsmayprojectto thesameimagepoint(if
scenepointsmove)andlightingcanchange,morerecentsystemsprovidemultiplemodels,e.g.aMixture
of Gaussians(MOG), per pixel. Existing systemsusuallysetthe numberof Gaussians,$ , within the
range� to % [15, 29]. Furthermore,for computationalreasons,thecovariancematrix is assumedto be
diagonal,i.e. uncorrelated.Obviously, thespecialcase$ � � is thetraditionalGaussianmodel.Wealso
notethat,with sufficiently many terms,aMOG canapproximate,thecasewhenasinglepixel’s intensity
distribution is notwell modeledby asingleGaussian.

To usea MOG model,wealsoneedto assumethateachunderlyingdatacomponentsatisfiesa quasi-
stationarycriterion: the signalis flat fading,i.e. the changein pixel intensityvalueis slow compared
to the updaterateof our model. For dynamicMOG models,we alsopresumethe high-level labeling
processwill correctly indicatewhich part of the mixture to update. Next, we briefly review previous
work onbackgroundmodeling.

The P-findersystem[11] usesa multi-classstatisticalmodel for the tracked objects,but the back-
groundmodelis a singleGaussianperpixel. A singleGaussianperpixel, usedin many systems,is easy
to estimate.If themodelis appropriate,thenthresholdingbasedonthestandarddeviation is statistically
well justified. Somesimplersystemsevenignoretheformal modelingof standarddeviationandsimply
trackthemeanor someothermodelsof centraltendency anduseanad-hocthresholdingprocess.

Other papershave statedthat the useof a singlebackgroundcan limit robust tracking,especially
with outdoorscenescontainingsignificantclutter, e.g.[2, 15, 29, 13], sothesesystemssupportmultiple
backgroundmodelsper pixel. Onesuchmodel,usedin [15, 29], is to fit a MOG to the given input
samples.Theparametricform of the MOG distributionsthencanbe usedto classifypixels. In [2], a
simplerform is usedthattracksonly thecentralvaluesof thetwo primarydistributionsfor apixel. These
papersdraw mostly on intuition and insight, anddo not presentexperimentsjustifying their multiple
backgroundmodelassumptionor parametersettings.

ThePASSWORDSproject,[30] usesan illumination changecompensationalgorithmto allow it to
work in outdoorsettings.They alsoemploy a shadow analysisto removeshadowsusingcolor analysis.
They usea backgroundimagethat is continuouslyupdatedto representthe non-moving objectsand
scenery. Riddler, et.al., [31], usesKalman filtering for adaptive backgroundestimationwhich takes
into accountchangingillumination so asnot to mistake lighting asobjectsof interest. They consider
thechangingvelocitiesof foregroundobjectsso thatobjectsthataretemporarilystationaryor moving
slowly arenotblendedinto thebackground.A similarapproachis usedin [3].

Thereare two approachesfor maintaining/updatingthe backgroundmodel: multi-sampleand per
frameprocessing.A few approaches,e.g.[15, 32], gathermany samplesperpixel (i.e. many images)
andthenusethemultiplesamplestocomputestatisticalmodelsusingaMOGandnon-parametricmodels
respectively. Thesemethodsrequireconsiderablymorememoryandprocessingandaremorecomplex,
e.g.[15] requiredhoursof computationto build its backgroundmodels,anddid not updatethemasthe
scenechanged.

Per-frameprocessingapproachesseekto computeanupdatedbackgroundmodelfor eachnew frame.
Theseapproachesareprobablymorecommonbecausethey requiremuchlessstorageandmuchless
computationthan maintaining ��$'& images(for a temporalwindow of size & and $ component
MOGs). The basicideais to updatethe backgroundmodelvia temporalblending(Equation2). This
de factostandardmethodfor backgroundmaintenanceis examinedin thenext section.An alternative,
which can really be viewed as simply a more principled approachto temporalblending,is to usea
Kalmanfilter, e.g.[3].

In systemswith multiplebackgrounds,aseparate(higher-level)processoftendetermineswhichof the
many backgroundsto update.If truevarianceestimatesareavailablefor eachof themany backgrounds,
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thentheMahalanobisdistancecanbeusedto measuredistanceof theinput from thevariousbackground
anddeterminewhich to use. In LOTS, we do not computeeachmodel’s variance,but insteadusethe
straightforwardprocessof simplegrey-scaledistanceto determinewhichbackgroundmodelis closer.

For thisclassof reference-imagebasedchangedetectionsystems,therearetwo maincomponentsthat
mustbeaddressed,backgroundmodelingandthresholding.We now examineeachof thesein turn.

3.1 Background Modeling Summary
For thesake of simplicity, we presumea two backgroundmodel.At sometime ( , let theprimaryback-
groundberepresentedby

�*)+�,.-0/ , andthesecondarybackgroundby
�1)2�,.-0/ . Thepixel intensityvalueis� ) ,.-0/ , where- is thepixel index. Forgrey-scaleimages- � ,4365879/ andfor : -channelcolor - � ,;3<5=7>5@?A/ .

Without lossof generality, wepresumetheinputat time ( 	 � wasclosestto theprimarymodel
�1)CBED+ ,.-0/ .

For performancereasons,if that is not true,we swapthepixelsbetweenthetwo backgroundimagesto
makethis likely to bethecasein thenext timestep.We definethedifferenceimagesto beF )+�,.-0/ � � ) ,G-H/ 	I� )+�,.-0/F )2�,.-0/ � � ) ,G-H/ 	I� )2�,.-0/ (1)

anddefinevariableJ1KML=N 5@O�P , astheindex with smallerdifference
FQ)

and RJ astheremainingindex.
In LOTS, backgroundupdatesdependon feedbackfrom upperlayers— updatingmoreslowly in

regionswe considerto betargets.In particular, we allow for someprocessto label thepixel - asbeing
in thetargetset S or in thenon-targetset & . Then,wecandefineageneralizedupdatewith� )4T6DU ,.-0/ � V � 	IW6XZY[�1)U�,G-H/6\ W6X � ) ,G-H/]- K^S )V � 	IW_Y`�*)U ,.-0/_\ W � ) ,.-0/ - Ka& ) (2)

where
W6X

maybe(generallyis) smallerthan
W

. Theotherbackgroundmodelis notupdated,i.e.� )4T<DbU ,.-0/ � � ) bU ,.-0/ (3)

Theblendingof Equation2 canservemultiplepurposes.Its originalmotivationwasto supporttempo-
ral changesin lighting. A secondarypotentialbenefitimplicitly exploitedby many systemsbut explicitly
consideredin [14], is that theblendingof a moving targetwith the backgroundproducesa “beneficial
ghost”of thetarget’spath.Theuseof

W<XdceW
allows thesystemto moreslowly adaptin targetregions,

limiting how quickly a targetwill beblendedwith thebackground.However, this alsoresultsin longer
falsealarmpersistenceandlimits thevalueof beneficialghosting.

If oneconsidersonly the naturaldiurnal changesin lighting, thenfor mostof the day the changes
neededto accountfor this arevery small. Nevertheless,many systems,e.g. [11, 33, 34, 21], usea
considerablylarge

W
. This largervaluemaybeexplainedby noting that largervaluesarebetterif that

is theonly mechanismwithin thesystemfor handlingchangescausedby fastlighting changessuchas
moving cloudsor targets/specularlyinducedautomaticgain control (AGC) effects. In addition,larger
valuescontribute to beneficialghostingof targetswhich tendto fill in gapswithin the moving target,
therebyincreasingthedetectabilityof fastmoving targetswhile reducingsensitivity for low contrastand
slow moving targets.Later, we discusshow LOTS handlestheseissuesby usingmultiple backgrounds
anda separatelighting changedetectionalgorithm.

An implementationissueof usinga modelsimilar to Equation2 is that it generallyrequiresdouble
precisionimages,especiallywith small updatevalues.As discussedin [2], usingvery small blending
parameterswhile using only integer imagesand integer math requiressometradeoffs. For the sake
of both speedandmaintenanceof numericalaccuracy, LOTS doesnot updatethe backgroundimages
every frame.Instead,it reducestherateat which thebackgroundis updatedsuchthatthemultiplicative
blendingfactorwasat least1/32.For example,aneffectiveintegrationfactorwith

W � 
�� 
�
�
 
����f
�g#%9� is
achievedby addingin

DD8h of thenew frameto thebackgroundevery �f
 ��� th frame.Thisslowerapproach
hasasecondaryadvantageof reducingcost.Analysisof LOTSshowedthat,if thebackgroundis updated
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eachframe,it becamethemostcomputationallyexpensive componentof thesystem,largerby a factor
of 4-6 thanthenext mostexpensiveoperationof subtractionandthresholding.Becauseof this,with its
usualsettings,the systemonly calls the updateprocessonceeach ��� to %9��� frames. Sincean update
requiresaboutonemillion operations(two multiplications,anadd,andashift perpixel), thisproducesa
savingsof � 
 –�#��
 MIPS.

Furtheranalysis,motivatedin part by our analysisof [35], discovereda minor difficulty with this
approach.Theanalysissuggestedthatverysmallvaluesof

W
aremostbeneficial.However, with theuse

of integer imagesandupdates,evenif thefractionis 1/16,theupdaterule cannotreducethedifference
to zerobecausethefinal few bitsareneveraffected.Thus,for fastimplementations,wedevelopedanew
updaterule thatwecall theup-downor theconditionalincrementmodel:� )4T<DU ,.-0/ � ij k �1)U�,G-0/ 	Ml

if
�1)U�,G-H/nm � )�1)U ,G-0/_\ l

if
�1)U ,G-H/ c � )�1)U�,G-0/ otherwise

(4)

where
l

is theupdateparameter. Again, onecouldusefloatingpoint arithmeticandallow arbitrary
l
,

but westick to integersandimplementfractional
l"c � usingtemporalsampling.

Perapplication,theup-down modelrequireslesscomputationandallows thebackgroundto exactly
matchthe input with just 8-bit integermathwhich permitsMMX optimizations.2 Themostimportant
drawbackto theconditionalincrementmodelis thatif atargetis mislabeled,thesystemdoesnot“blend”
it in significantly;it doesnotmatterif thetargetis nearlythesameor distantin grey values,theupdateis
constant.Sincetheprimarygoalof thisaspectof thesystemis to updatethebackgroundtohandlediurnal
lighting changes(which shouldbeslow), usinga scaleddifferencedoesnot seemjustified. Ratherthan
alwaysblendingquickly, LOTShasaseparaterapidlightingchangedetectionsubsystemthattemporarily
changesthesystembehavior whenlarge(i.e. non-diurnal)lighting changesoccur. Whenstronglighting
changesaredetected,the currentsystemtemporarilyincreasesits thresholdswhile alsoswitchingto a
larger

W
-blending-basedalgorithmto morequickly adaptaway the changes.The switch betweenthe

modesis automaticandbasedon rateof growth in a numberof pixels labeledastargets. If thegrowth
rateis very radical,suchasmight occurif anadversaryshinesa laserdirectly into the imagingsystem,
thesystemreportsit immediatelyandtriesagainon thenext frame. With this separatelighting model
changetechnique(alsosuggestedin [36]) the systemcanmaintainhigh sensitivity while maintaining
robustness.

While themajorityof existing systemsof which we areawareusetheblendingwith a multiplicative
factor, thereis oneotherpaperthatusesanadditiveupdaterule. In [3], whichaddressessurveillancein a
badlyilluminatedenvironment,a Kalmanfilter is usedfor backgroundmodelupdate.Thatfilter results
in anadditive factorto thecurrentbackgroundmodel,with the factorcomposedof two terms,onefor
slowly varyingillumination andonefor white noise. Sinceneitherof thesetermsshouldvary quickly,
theadditive termfrom thatKalmanfilter will generallybezeroor o!� .

Unlike [3], LOTS usesmultiple backgroundmodelswhich allow it to betterhandlecomplex back-
groundclutter includingobjectssuchastreesandgrassthat move but whosemotion is consideredin-
significant.Figure5 showsanexampleof thedifferencebackgroundimages.Thetreesin thescene,and
thepine needlesvisible on the lower left of the imagemove significantlyduring the trainingexercise.
The primary backgroundimageis visually indistinguishablefrom the input imageshown on the left.
Theright imageshows thesecondarybackground.In this image,thewhite pixelsarethosethat never
requireda secondbackground(andhencedo not have one). Thenon-whitepixelsshow thesecondary
pixel valueat that location,e.g.thedarker pixelsin theneighborhoodof thetreeon theupperright and
thepineneedlesin thelower left arenoticeable.Notethatthesinglepineneedleis responsiblefor asig-
nificantly largerregion in thesecondbackgroundimagebecauseit hasa largerrangeof motions.LOTS

2It requiresonly acompareandaddition,blendingrequiresat least2 add/subtractsand2 multiplies,andcannotbedonein 8-bit
math.
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Figure 5: The left image shows a section of a paraimage containing a sniper that illustrates
the multiple backgrounds used in LOTS. Left is the primary background, right the secondary
background.

alwayskeepsthe“closer”pixelsin theprimarybackground.Hence,if in thenext frametheneedlemoved
upward,thedarker pixelsat its currentlocationin theprimarybackgroundwould no longermatchand
theassociatedpixelsin theprimaryandsecondaryimageswould beswapped.In this sense,themoving
backgroundmayappearto movein theprimarybackgroundimageaswell.

3.2 Thresholding
Given the backgroundmodel,the changedetectionsubsystemstill needsto decideif a pixel’s change
is significant. A classicalapproach,presuminga Gaussianor MOG modelfor thebackground

�
is to

computethemeanp , � / andvarianceq , � / andusestandardstatisticaltestsfor the thresholding.For
example,we labelapixel - accordingtoS ) ,.-0/ �sr � if

� p , � ,.-0/8/ 	 � ) ,.-0/ � m ��q , � ,.-0/8/
 otherwise
(5)

wherea two q testwould give usa detectionrateof 95.1%. Of course,any othermultiple of q could
beusedwith differentchoiceson themissdetection/falsealarmrates. In LOTS, we do not presumea
Gaussianmodelandour thresholdsarebasedon thedynamicmodeldiscussed.

While statisticallysound,maintaininga true variancemodel is expensive and only appropriateif
noiseis anadditive stationaryGaussian.This staticmodelingis discussedin detail in [35] whereit is
shown that for this staticanalysis,a singleGaussian,ratherthana MOG, generallyhasa 15%to 200%
largererror. Theintuitive reasonis that theMOG canaccountfor variousnon-Gaussianfeaturesin the
distribution.

In Figure6, eachpictureshows thehistogramof thepixel intensityvalueof onepixel whenthetime
is changing. Eachrow in eachpicture representsa histogramfrom 100 samplesin consecutive time
intervals. Theverticalaxisof thesegraphsrepresentstime. Thedarker thepointsin thesehistograms,
thehigherthecountsare.Figure6 ,.tu/ shows thehistogramfrom a pixel on thegroundwherethetarget
appearsinfrequently;6 , � / is from apixel onthegroundwherethetargetappearsmorefrequently;6 ,.vw/
is from apixel of aswayingleaf;6 , F / is apixel onawaving short-grassarea;6 ,;x1/ is apixel onthewall
of a building neartheparkinglotsand6 ,;y*/ comesfrom shadowsin theparkinglot. Only pictures6 ,.tu/
and6 , � / containany targets.Fromthefigure,wenoticethatthehistogrammoveswhentheillumination
changes.

Clearly, thesefiguressuggestnon-stationarydistributions.Therefore,usingvariancefor thresholding
is notappropriate.Becausemostsystemsupdatetheirbackgroundvia a processsimilar to thatin Equa-
tion 2, theseshiftscanberemoved.However, mostof thedistributionsarealsochangingin variance—
noticethevariationsin thewidthsin 6 , F / .
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Figure6: Intensityhistogramsof differentobjectsover time.

Blendingor otherlow-passfiltering algorithmscanbedevelopedfor variance-like calculations.For
example, qEz) � , � 	I{ / qEz)CB|D \ { ,;} ) 	 p ) /8~�,;} ) 	 p ) / (6)

is usedin [29] asa varianceupdateequationbasedon a new observation,where } ) is the new pixel
value. Although suchfiltering may yield successfuldynamicthresholds,the statisticaljustificationof
thisuseof varianceis lacking.Furthermorethequestionof how sensitivity is impactedby thisapproach
hasnotbeenexplored.

LOTS’s approachis somewhat differentand intendedto maintainhigh sensitivity. In preliminary
systemexperimentation,we testeda running variancecomputationbut found it expensive and often
problematic. The difficulty may be that the underlyingnoiseis non-Gaussianand hencenot always
well suitedto traditionalvariancetests.For LOTS,wedevelopedanalternativetest— see[28] for more
detailsandananalysis.Whenupdatingthereferenceimage,theper-pixel thresholdis alsoupdated.If the
pixel differencefrom thenearestbackgroundis above theper-pixel thresholdandleadsto a “detected”
pixel thatdid not becomepartof any region, thenthethresholdis consideredtoo low andis raisedby a
constantv�� . If a pixel differenceis below threshold,thenthethresholdis reduced.To increasesystem
stability andreducefalsealarms,the thresholdincreasefor noisypixels is largerthanthereductionfor
below thresholdtargets.Furthermore,thechanceof increasingthesensitivity occursonly ��� v�� of the
time. (Onecouldalsoimplementthisasafractionalreductionof thethreshold,but theinfrequentupdate
approachallows the useof just integersand is computationallymore efficient.) In other words, the
approachin LOTSis to replaceacomparisonwith anapproximate(measured)variance,whichwould, if
thenoisewasGaussian,producea falsealarma fixedfractionof thetime,with a dynamicthresholding
thatis updatedsoastokeeptheapproximate(measured)fractionof falsealarmsataconstantrate.Rather
thanfit a modelthatpredictsthe falsealarms,we directly estimatethemandadaptto keepthemat the
desiredrate. Figure7 shows the dynamicthresholdsfor a samplescene.The regionswherethereare
two backgroundstendto have high thresholdsbecauseasa pixel changesfrom its primarycolor to its
secondary, it goesthrougha rangeof othercolors. This resultsin fleetingpixel level “detections”that
pushup threshold.Thelower right, wherethecamerais in the image,hasa moderatelyhigh threshold
becausethisdarkregionis lessstabledueto AGCeffectsandthishighernoiseresultsin ahigherdynamic
threshold.Theimageontheright of thefigureshowspixelsabovethreshold.Hadyounoticedthesniper
in thegrassin Figure5?Hewasdetected,andthosepixelswill notbeconsideredfalsealarms.However,
the few isolatedpixels (on the left, right andtop) will be removedby later processingandhencewill
causethedynamicthresholdsat thoselocationsto beraised.

Theprimarydisadvantageof thisdynamicthresholdapproachis thatit dependson thesystem’sclas-
sificationof a pixel. Hence,it may improperlyadapta thresholdwhena very small andlow contrast
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Figure 7: The left shows the system “dynamic” thresholds as an image. Darker pixels represent
a higher threshold. The right image shows pixels above the threshold.

targetfirst comesinto view, therebydelayingits time to detection.This is thereasonwe candetectand
trackregularsoldiersat50m,but wecannotdetectthelow contrastsniperuntil about20m–25m.

In addition to the dynamicper-pixel threshold,the systemhasa usertunableglobal “sensitivity”
thresholdthat is a function of the scenario’s requiredfalsealarm(FA) rateandmissdetection(MD)
rate. Evenwith the dynamicthresholdanda global threshold,it wasstill quite difficult to get a good
balancebetweenfalsealarmsandmisseddetections.To addressthis,LOTS introduceda new approach
to thresholding,which is describednext.

4 Grouping: Quasi-ConnectedComponents(QCC)
After changedetectionis applied,mostsystemsform regionsby collectingconnectedpixels. Because
therecanbesmallgapsfragmentingthe targets,andbecausetheremaybesmall isolatedfalsetargets,
many systemsaugmenttheir connectedcomponentswith morphologicalprocessing[34].

This sectionpresentsanalternativeapproachto morphologicalprocessingwhich combinesgrouping
with thethresholdinginto a processcalledquasi-connectedcomponents(QCC).While it wouldbegood
to have a detailedcomparisonof QCCandmorphologicalprocessing,a comparisonwould dependvery
heavily on the imagecontentandparametersusedandwould bedifficult to quantify. Herewe simply
presentthenew approachandits analysisin Section6. Onemajoradvantageis thatQCCpermitsthat
typeof probabilisticanalysis;similaranalysishasproventoodifficult to dowith morphology.

A main problemfor any pixel-level changedetectiontechniqueis the settingof the thresholdfor
decidingwhat a “significant” changeis. While the analysisin Section6 providesa principledway of
computinga Receiver OperationCharacteristic(ROC) curve to make that choice,deriving theseROC
curvescanbequitelaborintensive [35]. However, thetradeoff betweentheFA andMD ratesis oftena
difficult decision.If onechoosesahighthresholdto maintainasmallFA ratethentheMD ratewill often
soar. On theotherhand,the lower thresholdneededfor a low MD ratewould resultin a high FA rate.
Thechoiceis difficult, evenwith theknowledgeof theROCcurves.

Thisproblemof selectingthresholdsis notnew. An importantapproach,thathasbeenverysuccessful
in Canny-likeedgedetectors,is thresholding-with-hysteresis(TWH). Theideais to havetwo thresholds,
a high threshold( S|� ) andlow threshold( S0� ). Regionsaredefinedby connectedpixelsabove the low
thresholdwheretheregion alsocontainsa givenfractionof its pixelsabove thehigh threshold.In this
way, theregionhasanoverallhighsensitivity while alsotrying to insurethatat leastsomeof thepixels
areveryunlikely to befalsealarms(sincethey areabovethehigh threshold).Morphologycanfill gaps,
but it doessoblindly; TWH fills gapsbetweenhigh-confidenceregionsin a farmoremeaningfulway.

Therearetwo difficulties herethat mustbe addressedin a TWH implementation.First, an imple-
mentationbasedon iterative region-growing is not efficient enough.Second,evenwith a low threshold
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nearor equalzero,gapswill occurbecausepartsof targets,especiallycamouflagedtargets,canmatch
thebackgroundexactly. Thus,we still needa techniquethatcanfill acrosssmallgaps.Unfortunately,
mixing morphologywith TWH is not obvious(exceptperhaps,to applymorphologyafter region find-
ing with TWH). We proposeanalternative approachinspiredby our earlierwork on G-neighbors,[37].
The approach,which we call quasi-connectedcomponents, combinesTWH with gapfilling andcon-
nectedcomponentlabeling.Theprocessefficiently insuresthateachpixel in aquasi-connectedregionis
“connected”to a givennumberof pixelsabovethehigh threshold,evenif thepixel is within agap.

While we weredevelopingQCC,Foresti[3], wasindependentlydevelopinga systemthatalsouses
a thresholding-with-hysteresisbasedapproach.While the detailsof his implementationarenot totally
clear, hisTWH appearsto bequitedifferent.It is unclearif it is a 2D or a 1D threshold-with-hysteresis.
Theusagediscusseslocal neighborhoods,but it is not clearwhatinformationis propagatedandhow. If
it implementsregion-growing, this may be a part of the reasonthat the systemrequires.5 secondsto
processa ��%����I� %�� image. (LOTS runsat 30fpson a �#��
��M� � 
 paraimageon a 266MHz PII). It is
interestingto notethatanotherresearcherworkingondetectionin a difficult environmentalsofoundthe
needfor aTWH-likeapproach.

Theprocessinginherentin QCCis diagrammedin Figure8. This is acomplex figuredescribingmany
aspectsof a complex processandwill bedescribedover thenext pageof this paper. Thedescriptionis
intermixedwith commentson efficient implementationof QCC.Keepingthe quasi-connectedcompo-
nentsprocessfast is accomplishedby threetechniques.The mostimportantandinterestingefficiency
techniquecomesfrom a reductionin resolutionthatsimultaneouslyprovidessmallgapfilling. We will
discussthis in somedetailfirst. Theothertwo efficiency aidsarelesssignificantandwill bediscussedat
theendof thissection.

During thedetectionphase,thesystemsimultaneouslybuilds a lower resolutionimageof thepixels
above threshold,(e.g. the �����'��� imageon the top Figure8 is compresseddown to thesmaller �����
imagein thelower left.) Becauseof its relationto similar conceptsin multi-resolutionprocessing,this
is generallycalledtheparentimage,whereeachparentpixel hasmultiplechildrenpixelsthatcontribute
to it. Thevalueof eachpixel in this parentimageis, initially, a count(area)of how many of its associ-
atedchildren(high resolution)pixelswereabove thelow thresholdandhow many wereabove thehigh
threshold.

For computationalefficiency, one32-bit integer is usedto hold two values— the numberof pixels
exceedingthe low thresholdis in the lowestsixteenbits andthe numberof pixels exceedingthe high
thresholdis in the highestsixteenbits. Becauseof limited ranges,this allows a single32-bit addition
to combineboth countswithout the dangerof overflow. The shadedpixels in Figure8 areabove the
low threshold,the pixels thatarebothshadedandpatternedareabove low andhigh thresholds.Since
theresolutionis reducedby a factorof four in eachdirection,eitherthelow orderor high ordersixteen
bits of the parentimagepixel storagecontainsvaluesbetweenzeroandsixteen,andallow us to have
accuratelow-level areacountsfor thresholding.Connectedcomponentsarenot computedin the full,
high-resolutionimage.Instead,they arecomputedin theparent(low-resolution)image.As theconnec-
tivity is computed,we accumulatetheareain termsof high resolutionpixels. For examplein Figure8,
thedifferenceimageshows regionswith areasfive (upperleft grey region), 13 (lower left middlegrey
region) and21 (middle right darkregion). We notethatnoneof theseis completelyconnectedat high
resolution,illustratinghow QCCcanaccomplishfinegapfilling.

In the bottomleft parentimageof Figure8, two differentpixelsarelabeledwith their values. The
first hasvaluefour becauseit is theparentof four pixelsabovethelow thresholdandzeroabovethehigh
threshold.Thesecondis associatedwith four pixelsabovethelow threshold,oneof which is alsoabove
thehigh threshold.Thereforeit hasthevalue0x0100+ 0x0004= 0x0401(65,540decimal).

To help rejectpurenoiseregions,a low-resolutionimagepixel with a countof oneis ignoredwhen
formingtheparentimage,i.e. beforeconsideringconnectivity. An exampleof this is shown onthelower
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Figure 8: Example showing thresholding-with-hysteresis, quasi-connected components and
area thresholding processing.

right of thehigh-resolutionimage.In Section6.2,a detailedanalysisof someof the“noise” properties
of region-basedgroupingsimilar to QCCis provided.

The left imagein Figure9 shows the full “parent” imageassociatedwith the frameshown in Fig-
ure ??. The middle shows parentimageafter runningconnectedcomponentsalgorithmwheretargets
with sufficient area(6 high resolutionpixels)arecoloredwith the region number. Theright shows the
effect of QCC,whereonly thoseregionsthatcan“connect” to pixelsabove thehigh thresholdremain.
Again for thesake of presentation,we areusing“huge” targetswith morethan300pixelson target,so
thereadercantell whichcomponentsshouldbeonthetarget.Thesystemis intendedto work with much
smallertargets,oftenwith just 10-30pixelson target. The“target” in this caseis thesniperanda small
tail of theareaof grassthatherecentlycrossedover (which is slightly crushedcomparedto its original
state.)

Thesettingof low thresholdis thesumof thedynamicthresholdprocedureintroducedin theprevious
sectionandtheglobalthresholdthatcanbeadjustedby theuser. TheROC curvesdescribedin [35] and
summarizedlater(Section6.1)areusedto settheglobalthresholddependingonthedesiredMD/FA rate.
ThedesiredMD/FA rateis generallya functionof thescenario;e.g. for sniperswe maybewilling to
accepta higherFA rateto insurenomisseddetections.

Thehigh thresholdis currentlysetat a constanteither16 or 32 valueshigherthanthelow threshold.
This simpleaddedconstantabove thelow thresholdhastheadvantageof beingcomputableby shifting
the resultsusing the low threshold. In particular, a pixel is above low thresholdis a non-zerovalue
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Figure 9: Images showing parent image after various stages of QCC labeling, left is after
thresholding, middle after connecting regions, right after full QCC.

resultswhensubtracting,usingsaturatingarithmetic,the low thresholdfrom absolutedifferenceof the
new imageandthereferenceimage.It is above thehigh thresholdif shifting thelow-thresholdresultis
still non-zero.Thuswe computeboth thresholdsin anefficient manner, evenwith a per-pixel dynamic
threshold.

Theearlyversionof LOTSsimplyrequiredaregiontohaveatleastonepixelabovethehighthreshold.
Becausetheprobabilityof somenoisepixelsbeingabove thehigh thresholdincreaseswith thenumber
of pixels in the regions,we recentlychangedthe systemto have the numberof pixels requiredto be
abovehigh thresholdincreaseto ceil(

DD z@Þ t ), wheret is thehigh-resolutionareaof a region.
As mentioned,in additionto theresolutionreduction,therearetwo othertechniquesusedfor efficient

implementation.First,weusemarkersgeneratedwhile thresholding,sothatQCConly processesregions
betweenthefirst andlastnon-zeroparentpixelsper row. It alsousesmarkersto simplify processingif
thepreviousrow was“empty.” Thesemarkersaresetaswe thresholdthehigh-resolutionimagesothat
theQCCcomputationsareonly computedonsegmentsof eachrow.

Second,we usea very efficient union-findalgorithm[38] — the complexity is nearly linear (with
a small constant)in thenumberof pixelsabove threshold.Thenormalconnectedcomponentphaseis
only appliedto the low-resolutionparentimage ß which producesa label image à . Our Find pro-
cessincludessomeextra processingto maintaininformationon which of the new labelsmatch,in a
spatio-temporalsense,thepreviouslabels.TheUnion algorithmis standard,exceptthatweextendit to
combinetheareasof theassociatedregions.As theregionsgrow (i.e.asunionsoccur),wesumthevalues
of theparentpixelswithin thatregion. Becauseof theencodingused,thissingleadditiontrivially main-
tainsboththesumof thenumberof pixelsabovethehighthreshold,andthenumberbetweenthelow and
highthreshold.Whenthesystemhascomputedtheregion labels,wecandecideif a regionshouldbere-
tained.If onewantstheimagepixelsto havethenew labels,any connectedcomponentsimplementation
requiresa secondrelabelingpass.In QCC,werelabelregionsthatdonotmeettheareathreshold(either
too few pixelsoverall,or too few above thehigh threshold)to thebackgroundlabel. QCCmayalsobe
extendedto includefurther tests,suchasminimal areaor region pixel densityenforcementto further
eliminatenoisyregions.In thisway, thethresholding-with-hysteresisis essentiallycomputedduringthe
connectedcomponentlabelingprocess,without theneedfor eitheraddedthresholdingpassesor iterative
regiongrowing.

Theresolutionreductiondoesmorethanjust a datareductionspeedup;theresolutionreductionalso
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hastheeffectof filling in smallgaps.However, thegapfilling is spatiallyvarying;themaximumdistance
between“neighbors”variesfrom four to eight pixels. While LOTS usesa reductionby four, the idea
workswell with reductionsby factorsof eithertwo or eight,with moreor lesstheimpacton gapfilling
andregion fragmentationthat onewould expect from larger or smallerwindows. While not as“uni-
form” asmorphologicalprocessing,it is considerablyfaster. Theadvantage,however, is how it naturally
combineswith TWH. Furthermore,whencombinedwith theareathresholdingor densitylimits, it can
distinguishbetweena “solid” regionanda fuzzycollectionof isolatedpoints,somethingmorphological
processingcannoteasilydo. While not usefulfor our applications,higherlevel morphologicalprocess-
ing, suchasstructuredelementsearchingfor long-thintargets,still canbeappliedto theresultof QCC
processing.We arecurrentlyinvestigatinga tighterintegrationof QCCandmorphology.

Given that region detectionhasbeendonein the current frame, the systemmust then attemptto
temporallyassociatecurrenttargetswith pasttargetsandto analyzethetrackedregions.To helphandle
fragmentationdueto occlusions,the“tracking” modulein LOTSwill alsocombinetwo regionsthatare
spatio-temporallycloseif they areoneregion in previousframes,if themotionparametersandsizesare
consistentandif thesystem’sconfidencein thetargetis high.

Other approachesto grouping include techniquesthat merge closely relatedregions. Moscheni,
et.al. [39] developedtechniquesfor video codingandrobot vision that work only on two consecutive
frames.Both spatialandtemporalinformationis usedto computea similarity betweenregions. They
aremergedusinga weighteddirectedgraphanda graphclusteringalgorithm.Theirpaperalsocontains
agooddiscussionof previouswork in spatio-temporalsegmentationandmerging. Castagnoet. al. [40],
fuseautomaticsegmentationwith semanticinformationprovided by a userto createsegmentedvideo
streams.Theautonomoussegmentationis achievedthroughananalysisof multiple imagefeatures.It
is theuser’s duty to collectthesegmentedregionsinto regionsof meaning.Theseapproachesmight be
combinedwith thesimpleLOTSmergingto increaseperformance.

5 Tracking within LOTS
This sectionbriefly reviews theremainingcomponentsof LOTS — moredetailscanbefoundin [1, 2,
28]. The tracker runsunderLinux usingMMX enabledprocessors.Theoriginal systemranusingfull
resolution( ���#
á�^�#��
 ) images,at 30fpson a 266MHz x86 MMX systemwith 32MB of memoryanda
PCI frame-grabber. Therecentadditions,especiallythe lighting normalizedmatchingandnetworking
interface,reducedtheprocessingspeedto 15fpsand12fpsrespectively ona 300MHzportable/wearable
system. MMX instructionsareusedonly for the differencingpart of the algorithm. Therearemany
“real-time” trackingsystemsbut theauthorsareunawareof any othersthatcould,providesensitive full
resolution( ��� 
â�Q�#��
 ) trackingat15or 30fpswith low-costCOTShardware.Someof thecontributions
of thispaperaretechniquesintendedto helpachievethis typeof performance.

Becausethenoiseat eachpixel canchange,thesystemmaintainsa per-pixel threshold.Thesystem
addsa globalthresholdto theper-pixel thresholdallowing usersto decreasesensitivity. In earlierwork,
[1, 2], our systemwasdescribedashaving many parametersthat weresetby hand. While thereare
many variablesin thesystem,LOTSnow hasadaptivealgorithmsthatautomaticallyadjustthedynamic
threshold,theper-pixel threshold,andtheimagingsystemcontrastandbrightness.Theendusercanonly
choosethreeparameters— theminimumtargetarea,theglobal threshold,andtherequiredconfidence
neededbeforethe systemactually reportsa target. In practice,we usedtraining datato set the area
thresholdandglobalthresholdfor avarietyof scenariosincludingwoodedareas,snipersin fields,soldiers
in town, anda mixedwood/fieldsetting.

LOTSusesa two backgroundmodelsimilar to thatdescribedin Section3, with two additionalback-
groundimages.Theadditionalimagesareneverblended— they areexactcopiesof olderimages.This
helpsthesystemignore“ghosts”thatappearwhena targetentersthesceneandpersistsfor 2-5minutes.
More importantly, thesystemaugmentsthechangedetectionwith a lighting analysis.After QCC,each
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targetis comparedusinga normalizationfactorto seeif it canbeexplainedasa purelighting changeto
thatregion. Eachtargetregionundergoesa normalizedcomparison(scalingby theaveragevaluewithin
the“target”) andcomparingwith thecorrespondingpixelsin thereferenceimage(whicharenormalized
in thesameway). Becausewe have few pixelswith targetregions,we canafford this morecostlyanal-
ysiswhich helpsto ignorethe real,but insignificant,changescausedby moving shadows andlighting
changes.

Evenwith trainingandproperparametersettings,thesystem’ssensitivity canleadto falsedetections.
To reducetheseweusehigherlevel processing,suchasthenormalizedcomparisonsfor lighting changes
just mentioned. After QCC andregion filtering, the systemdoestemporalassociation.Most targets
arelinked in time by QCC directly. However, for thosethat aredisoccludingor stronglyfragmented,
thesystemusestherelatively standardideaof matchingspatio-temporallynearbytargetsto maintaina
track. This includessearchingbackmany framesto handlesmall targetsoccludedby largerobstacles
(e.g.closertrees).

While thesystemneedsto beverysensitive,whatwechooseto reportto theusermaybeonly a frac-
tion of thedetections.Thesystemcomputesaconfidencemeasureandby settingtheminimalconfidence
level for reporting,theusercanmoredirectly impacttheMD/FA rateof reportedresults.Theconfidence
measurecombinestheoverall targetsize,its speedin 3D, thequality of thematch,occlusiontime, its
rateof growth (for handlingcomplex lighting falsealarms),andits cumulativedistancetraveled(for han-
dling objectslike moving branchesbeforethesecondarybackgroundmodelcanadaptto includethem).
Theuseof cumulativedistancetraveledis similar in spirit to ideasin [17] thoughtheimplementationis
significantlydifferentaswedonotcomputea detailedflow.

Using the imagelocationof a detectedtarget, the systemusesthe single-viewpoint propertyof the
omni-directionalparacamerato back-projectthatdetectedtargetontoagroundplane.Systemcalibration
allows theuserto specifynorth,cameraheightabove thegroundandits GPSlocation. Using this, the
systemback-projectsraysto find the 3D positionof the targets. On approximatelylevel ground,the
system’s evaluationis limited by the resolutionof the GPSusedto gathergroundtruth — resultsare
oftenwithin the2–3metersof accuracy in thatgroundtruth.

ThreedifferentUI’s have beendevelopedfor the LOTS system. The two mostsignificantaspects
of the interfacesarethegeospatiallocalizationof targetsanddesignfor efficient bandwidthutilization
usingtheDARPA VSAM protocol[41]. Themostrecentinterfacewasdevelopedfor theDoD Smart
SensorWebprogram.This interfaceproducesJPEGimages(Figure4) thatshow theomni-directional
imageunwarpedasapairof panoramicviews. It alsoshowsamapwith thetargets’3D positionsplotted.
Themapis colorcodedsotheusercanrelatetargetsto oneof thefour unwarpedperspectiveimagesand
betterrelatethe tracksof targetsover time. The mapkeepstargetpositionsfor five minutesso a user
canseewhatregionshadactivity evenif no targetsarecurrentlybeingtracked.Thesystemmaintainsa
databaseof all theseJPEGimagesandallowsusersto requesttrackingresultsbasedontimeor location.

6 Err or Analysisand SystemPerformance
Having lookedat the systemandsomekey featuresof its implementation,we now discussits perfor-
mance. The performanceis clearly a function of someof the systemparameters.In this section,we
discussthesettingof thoseparameters.We begin our discussionof performanceat thepixel level using
ROC curves,comparingdifferentsystemparametersanddifferentpotentialalgorithmson a per pixel
basis.Thenwe turn to a moreformalanalysisof regions.

Thefirst partof theanalysis,thepixel level analysis,is relatively independentof LOTS, it doesnot
useQCCbut is ratherananalysisof thebackgroundor referencemodelingapproach.Theregionanalysis
showstheadvantagesof QCC.
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6.1 Pixel Level Analysisand ROCs
The pixel error analysisbegins with the computingof the Probability of FalseAlarm (N fa) and the
Probability of Miss Detection(N md). We convert the N fa andN md into ROC curveswhichcanbeused
to setsystemparameters.To producea ROC plot, all systemparametersbut onearefixedanda graph
of N fa vs N md is plottedasthe parameterof interestis varied. Onemay combinemultiple ROC plots
for differentvaluesof someof the fixed parameters.For backgroundsubtractionbasedsystems,the
parametersof mostsignificantinterestarethethresholds( SH� and S|� ) andtheblendingparameter(

W
orl

).
ReceiverOperationCharacteristic(ROC)curves/analysishavebeenusedextensivelyfor systemsanal-

ysisandparametersetting. ROC analysisgenerallyrequiresconsiderableexperimentationandground
truthevaluationto supporttheacquisitionof thenecessaryN fa andN md data.A simple,thoughlaborin-
tensive,approachto obtainingN faandN mdis throughsystemoperationoncontrolleddatawith alabeling
of falsealarmsandmissdetections.Thedesiredprobabilitiesthencanbeobtainedfrom the frequency
counts.However, this processmustbe rerunfor every systemparameterchange,therebysignificantly
increasingthecosts.

It is possibleto obtaintheseprobabilities,andhencetheROC curves,moreefficiently. In [35], we
showedhow thesevariablescanbecomputedfrom directmeasurables.To effectively usethis approach
weneedto setmodelparametersusingrealdata.Sincethatis mostlyaboutefficient computationof the
ROC curves,it is not presentedhere. In this analysiswe annotateda numberof real sequencesto get
target informationandcollectedbackgroundmodelsfrom evenmoresequenceswhereannotationwas
trivial becausetherewereno targets.

Theevaluationhereinwasfeasibleonly becauseit madeheavy useof theequilibriumanalysisfrom
[35] which developedmodelsof the system’s behavior andderived N fa and N md in termsof simpler
measurements.Theformulasarea bit long for thispaper, but thebasicideais straightforward.Develop
astabilizedmodelof thebackgroundusingrealtargetfreedata,thencomputeN fa andN md by assuming
somedistribution for the target, andthat the targetsaresufficiently transitoryto not impact the back-
groundmodelstate.For systemsanalysiswith ROCcurves,thisapproachallowsoneto analyticallymix
different“target” distributionsandtestthemagainstdifferentbackgrounds.By gatheringtrainingdata
on many differentinputs,we canhave targetmodelsfor pedestrians,cars,trucksandeventargetsthat
try to blendin (i.e. camouflagedtargets),andmix themin with differentbackgrounds.We studiedtwo
typesof backgroundmodeling.
Static Analysiswhereonesolves for the equilibrium stateof the backgroundmodelassumingMOG

modelsfor the backgrounds.Oncethis is done,varying a static thresholdis trivial as the entire
distribution is known. The equilibrium is recomputedfor eachdesiredblendingparameterasthe
blendingaffectsthefinal distribution. Intuitively, blendingtendsto shift thedifferentcomponentsof
theMOG towardeachothersinceany transitionfrom onebackgroundto theothermay, duringthe
transition,slowly updatethedistributionwith thewrongvalue.

Dynamic Analysis is neededfor thedynamicthresholdingapproach.For this, onesimulatestheback-
ground/thresholdupdatingto obtaina steadystate. OnethencomputesN fa and N md by assuming
somedistribution for the target,andthat the targetsaresufficiently transitoryto minimally impact
thesteadystate.

Note that sincethe dynamicanalysisdependson the rateof changeof lighting, it is computedusing
multiple trainingruns.Sincetheserunsareof sceneswithout targets,theannotationis trivial.

Deriving the equationsfor the per-pixel probabilitiesand the equilibrium analysisare beyond the
scopeof this paper. Sincethecurvesthemselvesprovide insightsinto thesystemsensitivity, we present
a few exampleshere. The resultshereextendthe examplesin [35] in that they includenew resultsof
applyingtheapproachto analternativebackgroundupdatingusingtheup-down (conditionalincrement)
modelof Equation4.
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In Figure10 and11 we presentcurvesthathighlight differencesin modelbehavior. In eachplot we
show variousupdateapproaches(parametersin thelegend)from Equation2 andEquation4. Eachcurve
shows pointsastheoveralldetectionthreshold( S � ) is variedfrom 0 to 31,— thresholdshigherthan31
werenotvery interesting.TheseexamplesaredefinedusingthreeGaussians:�²ã D � & , ��� äå�æ�fg g 5 %9� ��
 % / ,�²ã z � & , ��g �9� � %�ç 5 ç����ª��%�� / ,�²ã�è � & , ä��9� 
������ 5 ��%�ç��ªä���ç / .
TheseweredeterminedusingtheEM algorithmonsomeof thedatausedin Figure6. In thefirst example
(thegraphsof Figure10),weassumeã D and ã z arethebackgrounddistributionsandthat ã è is thetarget
distribution, i.e. two backgrounds(oneof which is broad),andonetarget distribution with moderate
contrast.Theuppergraphof Figure10 is thestaticcase,andlowergraphis thedynamiccase.Thescale
onbothgraphsis V �f
 BHé 5 ��
 B è Y � V ��
 B è 5 ��
 BED@Y . In this “easycase”it is clearthatthedynamicmodeling
is significantlybetterandthatslow updatesto thebackgroundwerebetter. Theblendingvs. up-down
comparisonsaremixed,but thebestperformanceswerefrom theup-down updates.Note thatbecause
oneof the two backgroundsis quitebroad,the N fa is relatively high, andit is easyto incorrectlylabel
oneof thoserandombackgroundvariationsasa target.
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Figure10: LogLogplotsof ROCcurvesfor aneasycase,onetargetandtwo backgrounds.

In themoredifficult case,thegraphsof Figure11,weconsiderã D to bethebackgroundand ã z and ã�è
to bethetargets.Again,uppergraphof Figure11is thestaticcase,andlowergraphis thedynamiccase.
Thescaleonbothgraphsis V ��
 BHê 5 �f
 B è Y � V �f
 B è 5 �f
�ë Y . In thismoredifficult case,thedynamicmodeling
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is better, just not asdramaticallyasin thesimpleexample.Notehow the N fa is now muchlower asthe
backgroundis bettermodeled,but the N md is increased,especiallyfor larger thresholds.This difficult
casemodelsoneof thetargetsbeingverycloseto thebackground,asituationcommonfor mostpixelsin
low contrastor camouflagedtargets.Note,however, thatevenin well camouflagedtargets,somepixels
at any givenpoint in time, will have high contrastandbemorelike theeasyexample.However, these
pixelswill besparseandnotspatiallyconnected.This is oneof thereasonsbehindthesuccessof QCC.
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Figure11: LogLogplotsof ROCcurvesfor thedifficult exampleof onebackgroundandtwo targets.

For staticmodeling,it is clear that the overall performanceis muchweaker than for the dynamic
modelingcase.As thesecurvesshow, the alternative up-down approachis often superiorto the more
commonblendingapproach.For thetwo staticcaseexamples,theup-down doesbetterfor very low N fa,
thoughthe resultsaremixed for larger N fa values. The up-down approachis markedly betterover the
wholerangeof N fa valuesfor thedynamiccase,whichis thedomainin whichit wasdesignedto beused.

For aparticulardomain,usingrealdataandROCcurvessimilarto thesewouldallow oneto determine
the appropriatechoicesfor the blendingandthresholdparametersfor a backgroundsubtractionbased
technique.

6.2 RegionLevel Analysis
Having looked at the pixel level analysisandsomeexampleROC curves that canbe usedto set pa-
rameters,let us now look at how to generalizethis analysisto the region level. This is an important
generalizationof theapproachtakenin [35] — theregion level is whereLOTSandmany systemsbegin
to distinguishbetweentargetsandnon-targets.Theanalysisof thegeneralform of quasi-connectedcom-
ponentsor regularconnectedcomponentsfollowedby morphologyis, atpresent,toocomplex to pursue.
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Instead,we considera slightly simplermodelof QCCwhich is a goodapproximationfor small targets
but ignoresthe non-uniformspatialgroupingthat would impactlarger targets. Oneof the advantages
of QCCis thatit permitsrelative straightforwardanalysis.Althoughmorphologicalprocessingis much
olderandhasarich mathematicalbackground,theprobabilityanalysisto obtainN md andN fa for regions
processedwith morphologyremainselusive.

Wedevelopequationsthattreatatargetregionashaving afixedsetof ì pixelsin anunderlyingregion
of : pixels.3 That is, supposethereare : pixels in the whole region and ì pixelsareassociatedwith
a target , :îíïì / . Let ð#ñ be the numberof pixels that aretargetpixels that have beendetected,hence, ì 	 ð#ñ / is thenumberof missdetectedpixels.Let ð � bethenumberof pixelsthatarebackgroundpixels
thathavebeenincorrectlydetected,i.e. thenumberof falsealarms.

We definemissdetectionprobability (N rm) andfalsealarmprobability (N rf ) at the region grouping
level asfollows N rm ò� óôõ@ö ë N md , ì � ÷ S / N , ì � ÷ S / (7)

N rf ò� óôõ@ö ë N fa , ì � R÷ S / N , ì � R÷ S / (8)

whereN , ì � ÷ S / and N , ì � R÷ S / aretheconditionalprior distributionson how many targetpixelswill be
in theregion giventhereis a real target in theregion, andgiventhereis not a real target in theregion,
respectively.

For the threshold-with-hysteresistherearetwo thresholds,called Sùø and Sùú , with SùøûíüSùú . In
thefollowing, superscriptsshow if theparametersarerelatedto thehighor low thresholds(they arenot
powers)andsubscriptsshow if they arerelatedto falsealarms(fa, detection(d) or missdetection(md).
The term vwýó representsthe combinationsn choosek. With this we can derive the joint distributionN , ð �ñ 5 ð �� 5 ð �ñ 5 ð �� / as: N , ð �ñ 5 ð �� 5 ð �ñ 5 ð �� / �v ýAþÿõ , N �md/�� B ý£þÿ (9)

� v ý �ÿý þÿ , � 	 N �md/ ý �ÿ , N �md
	 N �md/ � ý£þÿ B ý �ÿ��

� v ý£þ�ó B õ , � 	 N �fa/ ó B õ B ý£þ�
� v ý ��ý þ� , N ó �fa / ý �� , N �fa 	 N �fa/ ý£þ� B ý ��

with thejoint distributionof , ð � 5 ð � / givenasN , ð � 5 ð � / � ý �ôý �ÿ ö ë ý£þôý þÿ ö ý �ÿ N , ð �ñ 5 ð � 	 ð �ñ 5 ð �ñ 5 ð � 	 ð �ñ /
where ð � � ð �ñ \ ð �� is thenumberof pixelsthatarehigherthanthehigh threshold,and ð � � ð �ñ \ ð ��
is thenumberof pixelsthatarehigherthanthelow threshold.Obviously, ð �	� ð � .

In QCC,we have two areathresholdscalled ð �� and ð �� thatmustbesatisfiedto labela region asa
target. N , ð � í ð �� 5 ð � í ð �� / indicatestheprobabilityof how many pixelsarehigherthan ð �� andhow
many pixelsarehigherthan ð �� , wherewerequire ð �� � ð �� .

3Themathematicsin this sectionis a summary, themissingstepsarenot difficult but requirea bit of effort to work out. For
brevity they arenot included.
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NHñ , ì / ò� N , ð � í ð �� 5 ð � í ð �� � ì /� óôý þ ö ý þ
 ý£þôý � ö ý �
 N , ð � 5 ð � � ì /N � , ì / � � 	 NHñ , ì / (10)N � , ì / ò� N , ð � í ð �� 5 ð � í ð �� � ì /� óôý þ ö ý þ
 ý£þôý � ö ý �
 N , ð � 5 ð � � ì /
Notethatwhile theseequationsaredefinedfor thresholding-with-hysteresis,asusedin QCC,if one

setsthehighandlow thresholdsto thesamevalue,they alsoapplyto singlethresholdgroupingandhence
couldbeusedin theanalysisof systemswith only asinglethreshold.Also notethatwearenotenforcing
connectivity, thusit is a goodmodelfor small targetsin QCC,which get lumpedinto a singleparent
pixel or a few adjacentonesbut not for very largebut sparseregions. For this reasonwe only consider
moderatelysmalltargetsin theremainingdiscussion.

Usingtheaboveequationsanddatafrom theindividualpixel ROC analysispresentedin theprevious
sections,onecangenerateROC curvesfor regions. This doesnot includethespatialanalysisof QCC,
but beginsto show how someof thesystemparameters,including theminimumareasizeandthedual
thresholdsplay a role in determiningthe MD/FA rates. In Figure12 we considerthe region analysis
building on thepixel level resultsthatwerepresentedin in Figure11, i.e. for a difficult casewith one
backgroundã D andtwo targets ã z 5 ã�è , where ã z is very closeto ã D . The graphsconsiderfour system
parameters:thelow threshold,thehighthreshold,theminimumlow thresholdregionsize $��^à , andthe
minimumhigh thresholdregion size $
��� . Thetargetsizeis modeledasa Gaussiandistribution withp � ��� 5 q � � . Weusefrequency datafor targetsfromrealdata,wheretargetsoccurredin approximately
�� 
�
 �#� of theframes.Thetopgraphof Figure12showscurveswhereasinglethresholdis variedwithin
the curve andeachcurve is a differentregion size $
�aà . Note the scalesareradicallydifferentfrom
theper-pixel case—V �f
 B|D z ë 5 �f
�ë Y � V �f
 BED�� 5 ��
 B z Y . The secondgraphof Figure12 shows curveswith
the low thresholdsetat � , andthe high thresholdvarying (from right to left) from � to �f� . Whenthe
high thresholdis equalto low threshold,theright mostpoint on eachcurve, it shows thenon-hysteresis
caseor singlethresholdcase.Differentcurvesshow adifferentnumberof pointsrequiredabovethehigh
threshold.Increasingtherequirednumberof pixelsabovethehighthresholdis better. Thethird graphof
Figure12showstheinteractionof thenumberof pixelsrequiredaboveeachthreshold:within acurvethe
numberof pixelsabove thelow thresholdvaries(from right to left) from � to �A� ; eachcurvehas � , � , g
or � pixelsabovethehigh threshold.Overall, for thisdifficult caseweseethatthreshold-with-hysteresis
hassignificantaddedvalue— it allows ordersof magnitudereductionon false-alarmrateswith only a
minorchangein themissdetectionrates.For theeasycase,i.e. building from Figure10,thesystemwas
alreadydoingwell andaddedbenefitof TWH is measurablebut notassignificant.

7 External SystemEvaluation
To supporttheevaluationof LOTS,datawascollectedusingomni-directionalsensorsat Ft. Benningin
scenariosof interestto theDARPA SmallUnit Operations— SituationalAwarenessSystem(SUO-SAS)
program. Approximately70 hoursof omni-directionalvideo wascollectedin the first evaluationand
another40hoursin thesecond.Bothsetsincludebothsignificantamountsof “targets”andemptyscenes
for falsealarmevaluation. Atmosphericconditionsrangefrom light rain andwind, partly sunny and
windy to sunny with light breeze.Wenotethatin many of thesescenariosit is verydifficult to detectand
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Figure12: LogLogplotsof regionROCcurveswith respectto differentsystemparameters.

tracktargets,ascanbeseenin thetwo examplesof Figures2 and3. Readerscanfind videoexamples4

of thetracker in actionaswell asraw datafor testingat
http://www.eecs.lehigh.edu/˜tboult/TRACK/

Evaluationof this typeof systemis non-trivial andsomewhatsubjective. Whenthereis significant
occlusionandcamouflagedtargets,it is oftenhardto sayif a targetshouldbevisible or not. It is also

4Notefor effective transmissionon thewebthe“results”areMPEGfiles whichmeansthey have losta smallamountof image
quality.
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Certainty ��� Certainty ���
Scenetype % Detect � fa % Detect � fa
Indoor1 100% 1.00E ��� 100% 0*
Intersection1 89% 1.83E ��� 89% 0*
Intersection2 87% 4.61E ��� 62% 0*
Town Edge 95% 5.00E ��� 92% 1.89E ���
Forest 100% 3.33E ��� 76% 0*
Field (sniper) 100% 5.89E ��� 82% 5.56E ���
Mean 95% 3.61E ��� 84% 4.07E ���
Std.Dev. 6% 1.91E ��� 13% 7.59E ���

Table 1: False alarm and Miss detection rate (per frame) of basic LOTS tracker as of Aug.
1998. False alarms are per frame, detection rate is the fraction of all targets. Across the
scenarios the number of targets ranged from 8 to 30, and in all but the indoor settings the
targets were generally at a distance of 20-50m (80-12 pixels on person). This is before lighting
algorithms and changes to background modeling and without adaptive parameter adjustments.
Main sources of false alarms were about 60% insignificant motions (e.g. leaves and bugs),
30% lighting & shadows. *A miss detection or false alarm rate of 0 resulted because in the
approximately 15000 frames per scenario that were evaluated, that type of event was not found.

not clearwhensomethingis a falsealarm— e.g.,take theambiguouscasesof animals,insects,or the
emergenceof a new motionpatternof brushthatmight beworth investigating.Ratherthanpresenting
ourown evaluation,wereportonanexternalanalysisof LOTS,asof August1998.Thisevaluation,[42],
wasdoneby researchersat theInstitutefor DefenseAnalysis(IDA), wheretheir goalswereto seehow
well videosurveillanceandmonitoringcouldbeusedto supportsmallunit operations.

The 1998scenariosincludeda shortindoor segment,two urban/street(intersection)scenes,a town
perimeter(town edgeanda nearbytree-line),two differentforestsettings,anda sniperin a grassfield.
For the forest and field scenes,the evaluationwas limited to a 2–4 minute batchlearningphasefor
acquiringthemultiple-backgrounds,while theothershadat most30 secondsof learning. No learning
basedonuserfeedbackof falsealarmswasallowed,thoughit is supportedby thesystem.

Thesummaryanalysisis shown in Table1. Almostall detectionswereconsidered“immediate,” with
only themostdifficult casestakinglongerthanonesecond.Theaveragenumberof framesevaluatedper
scenariowasapproximately15,000(approximatelyeightminutes.)Falsealarmratesarepresentedhere
perframewhile theoriginal reportusedfalsealarmsperminute.

We point out that the evaluatorsoriginally labeledmany detectionsasfalsealarmsuntil they more
carefullyanalyzedthevideoanddatalogsandfound they hadmissedtargetsthesystemhaddetected.
For example,all rectanglesin Figure3 aretruedetections,but thismaybedifficult to tell from theimage
becausesomeof the targetsaresmall andof low contrast.In the forestsandfield scenes,mostof the
missdetectionsweretargetswith low contrastmoving in areaswheretherewasoftenancillarymotions
(i.e. wherethesystemhadmultiple backgroundsandthereforereducedsensitivity). In the intersection
scenes,mostof themissedtargetswereeithertoo small(but with enoughcontrastthatthehumancould
seethem),or they werein areaswith ancillarymotionandmultiplebackgrounds.Themainfalsealarms
in thetown sceneswerecomplex lighting/shadow effectswhile animals,bugsandsomebrancheswere
dominantfalsealarmsin theforestandfield scenes.

TheIDA evaluationsdid not includeany of LOTS’s reportedconfidencemeasures(they werein the
output,but not considered).We took thedetailedspreadsheetfrom their report,which showedin which
framestargetsweredetected,andthenwentbackto thesystemoutputandincludedtheconfidencevalues
to producethesecondsetof columnsin Table1. Thecomputationswith confidencelevelsweredoneat
Lehigh(not by the independentevaluators),but werebasedon their scoringof whatwasa falsealarm
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andwhat wasa true detect. We alsousedthe exact samesystemoutputvideo tapesproducedfor the
externalevaluation.

Theinitial evaluationandanalysisdid not allow for any incrementallearningnor adaptive feedback
on falsealarms.Incrementallearningis intendedto handlefastchangesin lighting. Oncetheend-user
saidaneffect wasa falsealarm,thesecondarybackgroundcouldaccountfor thelighting. Without that
feature,a large fraction of detectedfalsealarmsweresmall to moderatesizedlocationswith lighting
relatedchanges,(e.g. small sunpatchesor shadows.) In a wide field of view, many of theselighting
effectscanproduceimageregionsthat look like a personemerging from occlusionor a moving low-
contrastvehicle,which is why we intendedto useuserfeedbackto initially label themasfalsealarms.
The“ghosting”of targetswasalsonotedin their report,andthey toowereconsideredfalsealarms.The
systemneededto be moreautomaticbecausemilitary usecannotsupportthat level of userfeedback.
This requirementled to additionalcleaningphases,in particularthe introductionof lighting algorithms
andtheuseof theold-imageapproachto handlemid-termghosting.Ourupdatedsystemis acomponent
of SUO-SASprogram(in a project leadby CMU) that hasbeendeliveredfor long-termevaluationat
Ft. Benning.Thenew versionalsoincludes3D target localizationasseenin Figure4. Thenew series
of evaluationincludesmultiple cameraconfigurationsanddeterminationof both localizationaccuracy
anddetection/falsealarmrates.Thepreliminarydataanalysisfrom onecamerashoweda(still unofficial)
localizationof within 2mandadecreasein thefalsealarmrate.Formalresultsareexpectedtobereleased
in 2001.

This latestversionof LOTS is beingusedasa componentin the DoD SmartSensorWeb program
whereit is currentlybeingappliedin a moreurbansetting. Developmentof an8–14micron infra-red
versionof thesystemis currentlyunderway.

8 Conclusions
Detectionandtrackingof camouflagedtargetsrequiresbothsensitivity androbustness.Thispapershow
how wehavetakensuchsystemsoutof thelabandinto thewoods.It presentedanoverview of theLOTS
systemthathasdemonstratedtheability to track thesetargetsanddescribedsomeof its uniquedesign
choices.

The major contributions includea new approachto groupingcalled quasi-connectedcomponents,
which was introducedin Section4. QCC implementsa two level threshold-with-hysteresisapproach
thatfills verysmallgapsevenif thereis noconnection,andfills largergapsif thereis a bridgeof pixels
above the low thresholdconnectingthemto somethingabove the high threshold. This approachhas
beenusedin edgedetectorsandprovidesa uniqueandefficient approachfor its usein region detection
for visual surveillancesystems.The implementationpresentedis significantlyfasterthanprevious2D
regiongrowing approaches.

The paperdiscussedthe advantagesof a multiple-backgroundapproach,which hasbeenusedby
others,but with thenovel featuresof a new conditionalincrementbackgroundmodelingfor very slow
updates(Section3.1), the additionsof the non-blendedbackgroundimagesthat handle“ghosts” and
lighting changedetectionalgorithms(Section5).

Section6 presenteda discussionon theerroranalysisof theregiondetectionanduseof ROC curves
to helpunderstandtheperformanceof anddetermineparametersfor thechangedetectionsubsystem.It
presenteddatashowing how missdetectionandfalsealarmsratesvary at thepixel level, andcompared
thewell known blendingapproachwith the proposedconditionalincrementbackgroundmodelingap-
proach.We thenshowedhow, asan approximationto QCC for small regions,the pixel level analysis
couldbeextendedinto a region level analysis.TheROC curvesgeneratedfrom this new erroranalysis
clearly show the advantagesof thresholding-with-hysteresisfor difficult visual surveillanceproblems.
This theoreticalanalysisconfirmstheadvantagesof QCCthathadbeenobservedin practice,it allows
ordersof magnitudereductionon false-alarmrateswith only a minorchangein themissdetectionrates.
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Thepaperthendiscussedtheoverallperformanceof thesystem,asmeasuredbyanexternalevaluation
group. While the paperhasshown thesetechniquesin the context of low contrastandcamouflaged
targets,theexternalevaluationsshow that theseideascanbeappliedto otherlessdemandingdomains.
While thesystemrepresentsa majoradvancement,therearemany challengesremainingin this domain
including:bettertechniquesfor distinguishingsignificantmotionsfrom realbut non-interestingmotions,
targetidentification,bettermaintenanceof targetidentity over occlusions,full 24 hoursperday, 7 days
perweekoperation,andmulti-sensorfusion.

Our work, aswell asthat of Foresti ([?], suggeststhat for visual surveillancein domainswith low
contrasttargetsmoving in changingenvironmentswith highocclusion,wecanconcludewith threshold-
ing with hysteresisandmulti-level analysisplay a majorrole in thedevelopmentof effective solutions.
Giventhatquasi-connectedcomponentsis notonlyeffective,but computationallyinexpensive,weexpect
techniqueslike QCCwill becomea majorcomponentof futurevisualsurveillancesystems.
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Changes
Hereis ashortlist of thechangesmade(directly tied to commentsby reviewers).
" (R1)organizationof thepapercouldbeimproved(weaddedthetutorialstuff to theIntroductionand

reducedtheabstractetc.)
" (R1) IntroductionandBackgroundsectionscouldbeshortened(basedon otherreferee’s comments

weneededto addmaterialto theintro – Backgroundwasshortened)
" (R1)Titlesof figuresaretoo long(addressed)
" (R1)Evaluationsectioncouldbemoreemphasizedin thepaperto show resultsandmorediscussion

of field test(would’vesignificantlyincreasedlengthof paper, soit wasnotdone.)
" (R2) possiblynot enoughintroductorymaterialfor the non-specialist(tutorial sectionin Intro ad-

dressesthis.)
" (R2) paperreliestoo heavily on [29] GaoBoult CoetzeeandRamesh– shouldmake the paperas

independentof [29] aspossible(wasmademoreindependent.)
" (R2) needmoredetailsafter: More importantly, the systemaugmentsthe changedetectionwith a

lighting analysis:(addressedthere.)
" (R2)figures11-13legendstoosmall(addressed)
" (R2)brief qualitativeanalysisof thetechniquesof *general*applicability(seeconclusion)
" (R3) no comparisonof groupingwith existing methods(comparisonwith morphologyscattered

throughoutthepaper.)
" (R3)clearerclaimsin theabstractandintro (addressed)
" (R3) removing somefiguresandmakingtheremainingonesmoreunderstandable(addressed)
" (R3)polishingtheEnglish(done)
" (R3) Major modificationsto mathematicalformulationsandexplanationof resultsshouldbeclearer

andeasierto read(seelaterclarifications)
" (R3) Conclusionsarefar too brief – needmuchmoredetail – possiblyincluding new subsections

referringto variousclaims
" (R3)all figurecaptionsaretoo long(addressed)
" (R3) Thereis no prior referenceto the thresholdparameterG which is discussedhere: The two

parametersof mostsignificantinterestarethethreshold# and(addressed)
" (R3) page5: computationalcostfor windowedmeanandvariancearegivenfor grantedandshould

beexplained(nocomputationalcostis given,only storagecost.)
" (R3) page5: greyscaledistancevs. morestandardMahalanobisdistanceshouldbe justified(com-

mentsadded)
" (R3) page5: needto cite referencesfor this sentence:In somesystems,includingtheearly imple-

mentationof LOTS,backgroundupdatesdependedon feedbackfrom upperlayers.(deleted)
" (R3) page6: The claim that the “up-down model requireslesscomputation”is not justified (we

thoughtit wasobviousthatup-down-modelusesif testandadd,theotherrequiresasubtr, two mults
andanadd)
" (R3) In the Thresholdingsubsection,equation(5) on page6 – may needa moduloon lhs (added

absolutevalue)
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" (R3)page7: equation7of [25] needstobeexpanded(includetheequationorexpandtheexplanation)
(theequationwasaddedandexplained)
" (R3) page7: MOG backgroundmodelsaremoreof a convenience... not justified (removedsen-

tences)
" (R3)page8: Thefigure(9) inadvertantlyappearedbeforefigure8,disassociatingit from thedescrip-

tion. Descriptionmodifiedto addressthis.
" (R3)page10: (addeda higherlevel processingexampleto thesentence)
" (R3)page11: commentaddedto highlightgeospatiallocalization– section6 rewritten–
" (R3)page12: figure11simplyannounced(correctedaddedto text)
" (R3) page12: The sentence:In eachROC curve, the global thresholdwasvaried from 0 to 31,

although... shouldexplain why 0 to 31 wasused.(thresholdsgreaterthan31 aregenerallyoff the
graphs.)
" (R3)page13: formulas(6) through(12)hardto understand(addressed)
" (R3) usualmarathoncaptions– It’s a questionof style. We believe figurecaptionsshouldbestand

aloneandnot say“seetext for discussion.” Sincemultiple refereessuggestedthechangewe have
capitulated.
" (R3) page15: enhancewith imagesof “small targets”and“low contrastobjects”theparagraphthat

begins: We point out that theevaluators... (sentencesaddedto addressthis which refersto a prior
figure.)


