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Abstract. This paper presents a novel technique for improving face recognition
performance by predicting system failure, and, if necessary, perturbing eye coordi-
nate inputs and repredicting failure as a means of selecting the optimal perturba-
tion for correct classification. This relies on a method that can accurately identify
patterns that can lead to more accurate classification, without modifying the classi-
fication algorithm itself. To this end, a neural network is used to learn 'good' and
'bad' wavelet transforms of similarity score distributions from an analysis of the
gallery. In production, face images with a high likelihood of having been incor-
rectly matched are reprocessed using perturbed eye coordinate inputs, and the best
results used to "correct" the initial results. The overall approach suggest a more
general approach involving the use of input perturbations for increasing classifier
performance in general. Results for both commercial and research face-based bio-
metrics are presented using both simulated and real data. The statistically signifi-
cant results show the strong potential for this to improve system performance, es-
pecially with uncooperative subjects.

1 Introduction

Face detection is a critical preprocessing step for all face recognition systems. Its
ultimate purpose is to localize and extract the face region of an image (which may or
may not contain one or more faces) and to prepare it for the recognition stage of a
face processing engine. In general, as a face preprocessor, it must achieve this task
regardless of illumination, orientation or size of the input face image. As daunting as
this task is for computers, it is a task that humans appear to do rather effortlessly.
Face detection approaches can be broadly organized into two categories: feature-
based approaches [1], and image-based approaches [2]. The former relies primarily
on the extraction of low level features incorporating face knowledge explicitly, while
the latter treats the face as a pattern that can be learned from the two-dimensional
image array, incorporating face knowledge implicitly. However, regardless of the
approach, the result of face detection must enable some method for face registration,
in order to maximize the effectiveness of the recognition stage of the face processor.
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In all cases, this relies on the accurate determination of fiducial marks on the face,
ultimately needed for scaling and normalization.

Symmetry of the eyes and their consistent relationship with respect to other fidu-
cial marks on faces make them extremely useful for parameterizing and normalizing
geometric features of the face. Because eye separation does not change significantly
with facial expression, nor with up and down movements of the face, eye separation
distance is often used for face normalization. Nose distance, another feature often
extracted, is relatively constant with respect to side to side movements of the face
and also depends on accurate eye localization. In addition, orientation of the line
between the eyes is often used to correct for pose variations. Lastly, eyes are essen-
tially unaffected by other facial features like beards and mustaches, making them
invaluable features to most face recognition systems. As a result, eye localization is
often the critical thread connecting face detection and face recognition algorithms,
regardless of the underlying details of either algorithm.

Previous studies have emphasized the critical importance of eye localization and
have demonstrated the dramatic effect poor eye localization can have on face recog-
nition [3][4][10]. Given that the accuracy of eye localization has an effect on face
recognition performance, this paper seeks to address the following research question:
can we observe the effect that input eye perturbations have on an arbitrary
recognition algorithm for a given face gallery, and use that information to im-
prove classification performance? The goal of this paper is to predict classification
failure and, in instances in which it is expected to occur, use a failure prediction
module to select an alternative eye location (perturbation) that has the greatest
chance of yielding a correct classification, thus improving overall system perform-
ance.

The paper is organized as follows. A description of the method used to identify
candidate face images for eye input perturbation is presented. Next, statistical results
of simulated experiments explore the costs/benefits of our technique. The technique
is also applied to a set of “real-world” face images to show the utility of the ap-
proach. Finally, we conclude with a discussion of the results and comment on the
viability of a general approach to improving pattern classification using perturba-
tions of critical input data.

2 Failure in the Context of Face Recognition

All face classifiers ultimately yield some sort of similarity score for an input image
against all images in the face gallery. Typically, the scores are ranked to determine
the most likely set of matching face images. The definition of “failure” in the context
of face recognition typically depends on the application. For example, in identity
verification, a serious failure occurs whenever a face not in the database is matched
by the system, i.e. there is a false positive. In this case, the input face image matches
an image in the database with a similarity score that is above a certain threshold.
The decision of the system is based entirely on a comparison between two images, to
determine whether the person is who the person claims to be.
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In identification, the application of interest in this paper, a known or unknown
individual is matched against all of the face images in the database, and a set of
ranked potential matches is returned. In this case, the definition of failure is more
complex. If the person is in the database, failure occurs if too many face images
different from that person are ranked higher than the face image of that person in the
database. Here, “too many” depends on the criteria of the system and how the results
are interpreted. If the person is not in the database, it becomes problematical to de-
termine whether or not the face is in the database based on ranking alone.

We postulate that the relationship between the similarity scores of the matched
images (more specifically, the shape of their distribution) contains valuable informa-
tion that can yield insight into the likelihood that a given match will lead to a correct
classification. For example, intuitively, if all top ranked images have very close simi-
larity scores, we might tend to believe there is a low probability that the top ranked
image is the correct match. On the other hand, if the top ranked image has a similar-
ity score that is significantly higher than all of the rest, we might tend to believe
there is a high probability that the top ranked image is the correct match. In the
former case, the distribution of sorted scores may be broad and flat, while in the
latter case, narrow and peaked. Note that the criteria for “closeness” of similarity
scores also depend on the characteristics of the particular recognition algorithm,
since (usually) similarity score is not a metric.

In this paper, we use a machine learning approach to learn the characteristics of
“good™ and “bad” similarity score distributions, given a particular recognition algo-
rithm, a specific gallery of images, and various degrees of eye location error. “Good”
similarity score distributions are those that result in a correct ID match (rank 1), where
each individual (regardless of the number of images in the gallery) has a unique ID.
“Bad” distributions are all others.

We make the general assumption that input eye locations are primarily responsi-
ble for classification failure as supported by [3]. Using our failure prediction model,
we identify images that are likely to be classified incorrectly and then re-process
those images using a limited set of perturbed input eye coordinates to yield new simi-
larity score distributions. For each such image, the distribution most likely to yield a
correct classification is identified and used to obtain a modified classification.

3 Face Algorithms

Two different face recognition algorithms were used in all of the following experi-
ments: Elastic Bunch Graph Matching (EBGM)[5] and Facelt, a commercial appli-
cation based on an LFA algorithm [6]. The EBGM algorithm was provided by the
Colorado State University (CSU) Face Identification Evaluation System (Version
5.0) [7]. Facelt was implemented using programs built from a software development
kit licensed from Identix Inc. The reader is referred to the relevant publications for
details.
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4 Learning Similarity Score Distributions

In order to learn similarity score distributions, a sample of “good” and “bad”
similarity score distributions was required. If the intent were to learn "good" and
"bad" similarity score distributions for face images in general, one might be inclined
to train on similarity score distributions from a large set of "real" images of indi-
viduals in a given gallery. From an operational perspective and excluding syntheti-
cally altered gallery images, this would require considerable data collection and
ground truth. However, the very specific intent here is to predict the behavior of a
given algorithm on a given gallery with respect to input eye perturbations and to
enable the recognition of potential instances where incorrect eye localization can
result in misclassification. Generating the perturbation data is quite straightforward.
Given some basic training/testing sets, one simply forces the eye locations to differ-
ent positions and reprocesses the images.

As was shown in previous research, the behavior with respect to input eye pertur-
bations of a number of face recognition algorithms on degraded images, seems to be
quite similar to their behavior on clean, gallery images [3], only slightly smoother.
Consequently, the training set in this instance involved only the similarity score
distributions obtained by perturbing input eye coordinates of gallery images. The
prediction module therefore learns the sensitivity of the algorithm to eye localization
error in the context of the gallery for which classification improvement is desired,
which we later apply, with good success, to images in the field.

4.1 Preprocessing

The images used to obtain training data consisted of a gallery of 256 individuals,
each with four different frontal view poses (for a total of 1024 images) and obtained
from the FERET database. The exact set of images can be obtained from the authors.

It was hypothesized that the number of poses of a given individual would affect
the relevant characteristics of similarity score distributions. For example, if an indi-
vidual had ten different poses in a given database, it is conceivable that all ten poses
might cluster very closely in the top ranks of the similarity score distribution. On the
other hand, with only one pose in the database, an individual's score might be dis-
tinctly different from all others, resulting in a similarity score distribution that is
much more peaked. This suggested that a multi-resolution approach might be benefi-
cial to extract relevant detail, which might depend on the number of poses each indi-
vidual has in the database.

Recall that a wavelet basis is described by two functions (the scaling and the
mother wavelet function), and a basis is obtained by translating and resizing these
functions. Any signal can be represented uniquely and exactly by a linear combina-
tion of these basis functions, provided the basis functions are orthornormal. Wavelet
basis functions also have a characteristic called compact support, meaning the basis
functions are non-zero only on a finite interval. In contrast, the sinusoidal basis func-
tions of the Fourier transform are infinite in extent. The compact support of the
wavelet basis functions allows the wavelet transformation to efficiently represent
functions or signals which have localized features.
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In this application, a 4 point discrete Daubechies wavelet transform [8] was used
to process the top 2k sorted similarity scores, where k is the number of poses for each
individual. In this case, k=4, resulting in a total of 8 wavelet coefficents,. Reflection
generated the necessary points for the function boundary. A Daubechies wavelet
transform was used due to its (coarse) similarity to the distributions as well as its
overlapping iterations, enabling it to pick up detail that might be missed by, say, the
Haar transform.

Two additional features were also computed. The first was the next highest rank
of the same ID as the top ranked image. Since only the top 2k similarity scores were
observed, this number was clamped at a rank of 2k+1. Very high numbers for ranks
are known, from previous experience, to be relatively unstable as predictive features.
The intuition here is that the likelihood of the winner being correct is higher if the
image of one of its other poses is also highly ranked.

The second feature was the number of pairs of identical Ids in the top 2k similar-
ity scores that have a different ID from the winner. In this case, it was hypothesized
that the presence of two (or more) same-ID highly ranked images in the top ranks
might also have some bearing on the possibility of classification failure.

4.2 Training

Gallery images were run through each algorithm using all combinations of input eye
offsets shown in figure 1, resulting in 9x9=81 runs per algorithm. Note, the same
pair of eye offsets was applied to all of the gallery images for any given run. Random
eye offsets for each individual image were not trained on, since any feasible method
used in production would have to apply the same pair of offsets to the entire probe set
(see section 4.3).

¥ o

Figure 1. Eye offsets used for training.

The distance between points in the images tested was six pixels. In general, this
perturbation depends on the scale of the imaged face, with the goal to select points to
span the extent of the eyelids and the whites of the eyes. Similarity scores of the 8
top ranked images were stored along with the other two features discussed previously
for all images. Feature vectors were generated and organized into two datasets, one
for images whose rank was one (correct matches) and all others (incorrect matches).

A random sampling of 5000 out of 1024x81=82944 feature vectors was used to
train a backpropogation neural network [11]. All other 77944 feature vectors were
used for testing. This was done for both the FACEIT algorithm and the EBGM algo-
rithm. Thresholds that maximized performance on the test set were fixed for all
subsequent experiments and are shown in table 1, along with network architectures
and performance. The neural net trained in approximately one day on a G4 Macin-
tosh, and due to the small size of the network, and the relatively small wavelet trans-
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form, processed inputs very quickly. Behavior was also observed to be relatively
smooth around the peak threshold and relatively stable. Overall performance of the
neural net resulted in good generalization, with rates for testing showing only a
small loss over training set accuracy.

Face Number of Nodes Constants Percent Correct Fixed
Algorithm | Input | Hidden|Output J Learning | Momentum | Sigmoid ] Training Test [Threshold
FACEIT 10 5 1 0.05 0.5 0.05 95.7 94.5 0.4
EBGM 10 5 1 0.05 0.5 0.5 95.2 92.4 0.45

Table 1. Backpropogation network architecture and performance.

4.3 Random Eye Perturbation Experiments

To study the effectiveness of our approach, we first analyze our prediction ability
with respect to controlled simulation experiments. The images used in this experi-
ment are from one session of outdoor data arbitrarily selected from our larger data
set collected as follows. Each session consists of the same 1024 FERET images used
for training, but displayed on an outdoor LCD monitor and re-acquired under vary-
ing time and weather conditions. Images are projected on a 15" LCD monitor and
acquired asynchronously by two cameras at high speed from a distance of approxi-
mately 100 and 200 ft. Images are zoom adjusted so that facial images have ap-
proximately 50-100 pixels between the eyes. Eye coordinates for all images are com-
puted, using the known location of the eyes from the gallery image and a pair of
easily identifiable markers located in the projected image.

A series of random Gaussian offsets were applied to the eye coordinates of all im-
ages to create a series of probe sets with varying degrees of eye localization error. For
this set of experiments, we selected offsets with a mean of zero and four different
standard deviations: 2, 4, 6 and 8 pixels radially from the center of the known loca-
tion of the eye. Note that different random perturbations were applied to each image,
and 30 different random seeds were used for each standard deviation. This resulted
in 4x30=120 runs of each algorithm on the same set of 1024 images. The intent of
this experiment was to show the effectiveness of our approach as eye localization
increases in error.

The data flow for the analysis of a single probe image is shown in figure 2. For
each probe, the similarity scores are processed and the feature vector passed through
the previously trained neural net. If neural net output exceeds the fixed threshold, the
image is determined to have a high probability of being correctly classified and its
classification is left intact. However, if the neural net output is below the threshold,
the image is assumed to have a low probability of being correctly classified, and is
then passed onto to the next stage of processing.

Three different subsets of eye offsets were investigated for their effectiveness. In a
production setting, it may not be feasible to try all (for example) 81 combinations of
offsets (or more) from a resource point of view. It would be beneficial to determine a
smaller set of eye perturbations that have a high likelihood of achieving good per-
formance gains versus the cost of reprocessing images. As a result, three subsets of
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eye offset combinations were tested, referred to as: SCALE (6 offsets),
TRANSLATE SCALE (26 offsets and X _SEP_CONSTANT (8 offsets).

SCALE included those offsets that simply increased or decreased the x separation
between the eyes, embodying the implicit hypothesis that scaling is a significant
factor affecting face algorithm performance.

X SEP CONSTANT included those offsets that simply translated the given x

coordinates for both eyes, keeping the distance between them the same.
Finally, TRANSLATE SCALE included all previous offsets, including scaling in
conjunction with translation. No offsets in which one eye was translated in relation
to the other were included in the analysis due to the prohibitive cost of post-
processing.

Once a probe is identified as having a low probability of being correctly classi-
fied, it is then perturbed with an offset, and reprocessed by the face algorithm. This
is repeated for all offsets in the subset. The feature vectors each time are input to the
neural net, and the largest output (out of all of the offsets applied) is noted. The
ranking information for this result supercedes the original classification only if:

1. it’s neural net output exceeds the fixed threshold
2. it’s neural net output exceeds that of the original

Results. First, it is instructive to look at how the algorithm behaves with respect to
the decisions that are made during processing. As shown in figure 3, the neural net
performs extremely well on the initial data, achieving a classification accuracy ex-
ceeding 90% over the entire range of initial input eye perturbation. Recall that the
eye perturbation in this case is a random Gaussian variable and different for every
single image, resulting in a rigorous test for the neural net. Note also, the very low
false negative and false positive rates, indicating a relatively high efficiency (at least
at this level) of the algorithm.

Not unexpectedly, as the variance of initial eye perturbation increases, perform-
ance decreases. However, it is interesting to note that there is a greater relative gain
as variance increases, and as performance in general decreases. This is shown quite
clearly in figure 4. This suggests that such a method might be even more useful as
eye localization errors increase since at least one of the perturbations used to try to
correct the classification error may be in the direction of the needed change. Changes
in and around the correct location may not result in significant benefits. Neverthe-
less, even in the case of small initial perturbations, significant improvements (albeit
small) were noted.

In general, TRANSLATE SCALE performed slightly better than SCALE, but at
a significantly higher cost (see figure 5). With only six offsets, SCALE was able to
improve recognition performance significantly with much lower cost. This fact is not
very surprising if one considers the importance of scaling in face analysis systems.
These results suggest that adjusting factors that affect normalization (specifically eye
separation distance) and then re-processing is a prudent approach to improving face
recognition. This is consistent with observations made in [4] that eye separation
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distance seemed to have a greater effect on face recognition performance than the
actual location of the eyes themselves.

Not surprisingly, X SEP CONSTANT performed considerably worse, although
due to the accuracy of the neural net, performance did not degrade. It is conceivable
that bad decisions by the neural net could result in falsely classifying an image as
having a high probability of being classified correctly after applying an eye perturba-
tion; however, this was clearly not the case.

With respect to the behavior of the neural network during processing, several im-
portant observations can be made. Results only for SCALE are shown in figure 6.
First, the fraction of perturbed images that actually resulted in a degraded classifica-
tion is extremely low, on the order of about 0.1%. Informal observations of the data
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indicated that even so, the amount of degradation was usually on the order of 1 or 2
ranks (e.g. changing a rank 1 image to a rank 2 or 3). Second, recall that once a
probe is initially identified as having a high probability of being incorrectly classi-
fied, the image is offset multiple times and the output of the neural net for each re-
processing is used to determine what to do with it. If the neural net determines the
new result has a low probability of being correctly classified, that result is not con-
sidered. As seen in the top of figure 6, the fraction of perturbed images for which this
is true is rather high. However, this is to be expected since the likelihood of a given
perturbation to actually make things worse is rather high. In fact, the neural net is
actually doing quite well, rejecting a large number and accepting only reasonably
good possibilities. Of those accepted, i.e. when failure is predicted successfully (see
the bottom of figure 6), approximately 50% result in an improvement in rank.

4.4 Biometric Perturbations of Real Images

Finally, a set of experiments shown in figure 7 clearly shows the benefit of the ap-
proach for real images. Four different times of day throughout the month of May
were used for this analysis. SCALE perturbations were used to significantly improve
face recognition results for the FACEIT algorithm. Note that in this set of experi-
ments, errors in eye localization come from two sources: the eye localization error
due to degradation of the input image as a result of atmospheric effects, and the eye
localization error due to possible weaknesses in the FACEIT eye localization algo-
rithm. Together, eye localization error is clearly an unknown quantity, but is ex-
ploited quite effectively here, to improve overall classification.

S5 Conclusions

Eye localization has been shown to have a significant impact on face recognition

algorithms. This paper uses that fact to show how machine learning and failure
prediction can be integrated into a perturbation-based approach for overall system
improvement. Our approach was tested on synthetic data using two different face-
recognition systems; it showed both good failure prediction performance and, when
failure was predicted, corrected for it about 50% of the time. It also managed to do so
rather efficiently, requiring only a fraction of the total number of offset combinations,
and would be expected to do even better in a production environment.
Using outdoor face data and a commercial face recognition system, the approach was
able to predict failures and then predict which perturbations to keep, to achieve a
statistically significant 3% to 8% overall improvement beyond the already impressive
85% overall recognition rate of the base commercial face recognition system.

While this paper has focused on face recognition, since the use of “similarity
measures” is ubiquitous, this approach should apply across a broad range of pattern
recognition problems. In fact, any instance where a weak link exists in a pattern
recognition problem, and that also has a limited local perturbation space, is a viable
candidate for such an approach.
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