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ABSTRACT

Competing notions of biometric recognition system fail-
ure prediction have emerged recently, which can roughly be
categorized as quality and non-quality based approaches. Qual-
ity, while well correlated overall with recognition performance,
is a weaker indication of how the system will perform in a par-
ticular instance - something of primary importance for criti-
cal installations, screening areas, and surveillance posts. An
alternative approach, incorporating a Failure Prediction Re-
ceiver Operator Characteristic (FPROC) analysis has been pro-
posed to overcome the limitations of the quality approach,
yielding accurate predictions on a per instance basis.

In this paper, we develop a full multi-modal recognition
system integrating an FPROC fusion-based failure prediction
engine. Four different fusion techniques to enhance failure
prediction are developed and evaluated for this system. We
present results for the NIST BSSR1 multi-modal data set, and
a larger “chimera” set also composed of data from BSSR1.
Our results show a significant improvement in recognition
performance with the fusion approach, over the baseline recog-
nition results and previous fusion approaches.

1. INTRODUCTION
For any biometric recognition system, maximizing the per-
formance of recognition is a primary goal. Clearly, we do not
want an impostor to be recognized as a legitimate user, nor
do we want a misidentification in the case of a watch-list se-
curity/surveillance application. Moreover, when a legitimate
user attempts to interface with a recognition system for au-
thentication or verification, we expect that they will be identi-
fied properly. Any case where an undesirable result occurs in
these scenarios is an instance of failure.

Image or sample quality has long stood out as the leading
predictor of failure in biometric recognition systems. NIST
continues to be the most visible organization promoting qual-
ity, producing several influential studies [1] [2]. In [1], a re-
liability measure for fingerprint images is introduced, and is
shown to have a strong correlation with recognition perfor-
mance. In [2], methods for the quantitative evaluation of sys-
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tems that produce quality scores for biometric data are de-
scribed. Both works make a strong case for quality as an
overall predictor of system of success, and thus, promote the
widespread use of quality as a predictor of failure. However,
current work emerging from NIST on quality assessment is
starting to question the assumption of quality as a universally
good predictor.

At the recent Multiple Biometric Grand Challenge work-
shop, two presentations [3] [4] for NIST commissioned stud-
ies on quality assessment made the following claim:

Quality is not in the eye of the beholder; it is in the
recognition performance figures!

This assessment was based on the analysis of quality met-
rics for iris and face recognition. For the iris work [3], three
different quality assessment algorithms lacked correlation in
resulting recognition performance, indicating a lack of con-
sensus on what image quality actually is. In the face recogni-
tion work [4], out of focus imagery was shown to produce bet-
ter match scores. Both studies produced conclusions that are
counterintuitive to traditional notions of quality assessment.
Further, the work of [5] also introduces this notion, with a va-
riety of “poor quality” images shown to produce better match-
ing scores than “high quality” images for the same subject.
Instead of suggesting a new paradigm for failure prediction,
NIST has remained firm in its backing of quality assessment,
posing this issue as an open question for researchers.

Reflecting upon this issue of quality a bit deeper, we can
begin to understand its limitations. On a per instance basis, [4]
showed that what is visually of poor quality produced good
recognition results. Thus, “quality” is indeed found in the
recognition performance. A compelling alternative approach
[6] is to learn when a system fails and when it succeeds, and
classify individual recognition instances using the learning as
a basis. Based on the decisions made by a machine learning
classification system, a Failure Prediction Receiver Operator
Characteristic Curve can be plotted, allowing the system op-
erator to vary a quality threshold in a meaningful way. Fail-
ure prediction analysis of this sort has been shown to be quite
effective for single modalities [6], fusion across sensors for
a single modality [7], and across different machine learning
techniques [8] [5]. A further goal is to enhance the failure pre-
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diction performance through fusion across algorithms, failure
prediction features, and modalities, and ultimately, enhance
the performance of the underlying recognition system.

A wide variety of methods for fusion have been devel-
oped and many have been studied for biometrics. In [9],
several score-level fusion techniques are compared with mea-
surements of the effectiveness of fusing data made in various
combinations: multi-modal, multi-instance, multi-sample, and
multi-matcher. This extensive study, however, was focused on
existing ad hoc techniques. It is possible that one or more sen-
sors may fail in recognition, and the goal of fusion is to only
use the non-failing result. The ideal approach is one that bases
the fusion on the quality of the data and the quality of the bio-
metric matching on the quality of the resulting fusion (see the
work of [10], [11], [12], [13], [14], [15] and [16]). The funda-
mental idea in quality-based fusion is to more heavily weight
the results from “higher quality” data. Unfortunately, in to-
day’s multimodal biometric systems, there is often no real-
time indication as to the quality of data or match results gen-
erated from each biometric algorithm/modality in the system.
Without such data a “quality” based fusion cannot be applied.
Moreover, as we have already discussed, a “poor quality” im-
age may indeed result in a good match score.

The vast majority of fusion work to date has focused on
combining consistent data to address limitations of sensors
or failure of a modality to correctly identify a subject. We
also note that for screening, especially for adversarial threats,
failure-prediction based fusion is quite different from any fu-
sion approach that is focused on combining consistent data.
If an adversary is actively trying to defeat the screening, then
a biometric, say voice, that is providing a more inconsistent
answer than another, say multi-view face, does not mean it
should be ignored. If one modality predicts success and an-
other predicts failure, we can safely ignore the predicted fail-
ures and let the others proceed, consistent or not. The re-
cent case of Ramirez Abadia, in Brazil, who underwent mul-
tiple face reconstruction surgeries, but was apprehended by
voiceprint recognition, with the help of the DEA, is a timely
example1. A face-based system would have failed to recog-
nize him, but a voice-based system correctly recognized him.
As we shall see, the FPROC-based technique is not just a bi-
nary classification, but more of an overall confidence measure
(that may be thresholded for classification), so it can be very
effectively used to support various approaches to fusion and
hybrid classifiers. But unlike the ad-hoc hybrid classifiers,
FPROC analysis can provide a more formal way to determine
goodness, in the sense of [13].

In this paper, we develop a full multi-modal recognition
system integrating a failure prediction fusion-based engine.
In section 2, we introduce the fusion-based failure predic-
tion system architecture, with failure prediction features de-
scribed in 2.1 and specific fusion techniques described in 2.2.

1http://www.washingtonpost.com/wp-dyn/content/article/2007/08/10/
AR2007081000704.html

Fig. 1. Thresholding a per datum reliability or “quality” mea-
sure to predict recognition system success produces 4 differ-
ent “cases”, depending on the success of the recognition sys-
tem on a sample and the reliability-based prediction of suc-
cess or failure associated with that sample.

In section 3, we report extremely promising results for fu-
sion of failure prediction, and show significant improvement
in recognition after failure prediction analysis. We conclude
on the note that FPROC based analysis is an important alter-
native to quality analysis, especially in cases where per in-
stance failure prediction is essential.

2. ENHANCING FUSION WITH FAILURE
PREDICTION

If a system can predict which input is more likely to fail,
that input can be given less weight. Figure 1 shows two dis-
tributions of successful recognitions and recognition system
failure with the x-axis showing some measure of confidence.
The idea of post-recognition failure prediction is based on
the construction of a learning system that will predict failure
based on prior system performance. The input to such a learn-
ing system is a feature vector calculated from the recognition
scores. It might seem we could focus on “success-based fu-
sion”, since predicting failure is the opposite of predicting
success. However, we focus on failure prediction since the
failures are, in general, the less frequent outcome, and hence
better suited to machine learning approaches. Over a set of
recognition scores, each output of such a learning system is
in one of the following four cases (depicted in figure 1):

1. “False Accept”, when the prediction is that the recognition
system will succeed but the ground truth shows it will not.
Type I error of the failure prediction and Type I or Type II
error of the recognition system.

2. “False Reject”, when the prediction is that the recognition
system will fail but the ground truth shows that it will be
successful. Type II error of failure prediction.

3. “True Accept”, when the underlying recognition system
and the prediction indicate successful match.
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4. “True Reject”, when the prediction system predicts cor-

rectly that the system will fail. Prediction success with
Type I or Type II error of the recognition system.

The two cases of most interest are Case 2 (system predicts
they will not be recognized, but they are) and Case 1 (system
predicts that they will be recognized but they are not). From
these two cases we can define the Failure Prediction False
Accept Rate (FPFAR), and Failure Prediction Miss Detection
Rate (FPMDR) (= 1-FPFRR (Failure Prediction False Reject
Rate)) as:

FPFAR =
|Case2|

|Case2|+ |Case3|
(1)

FPMDR =
|Case1|

|Case1|+ |Case4|
(2)

A variety of features may be used as a basis for an FPROC
curve, as long as they have the ability to capture the infor-
mation contained in the tails of the underlying score distri-
butions of figure 1. It is these tail regions that represent the
scores most likely to cause the system to fail, and the regions
our classifier can be tuned to, in order to reduce the Type I
or Type II errors of the system. A good feature for failure
prediction will be able represent much more than just a raw
score, which is often too ambiguous for learning whether or
not it is a match or non-match, because it lacks associated
distributional information. Failure prediction features are de-
signed to capture distributional information over a series of
localized scores. In previous work, Daubechies wavelets [8],
DCTs, and difference calculations [5] were applied to local-
ized scores. Further, raw quality itself can be re-introduced
in the context of failure prediction as a feature [6], enhanc-
ing its somewhat weak prediction capabilities for per instance
prediction by building predictors over quality classifications.
The previous work has shown that were are not bound to any
particular feature, or learning technique, for acceptable per-
formance.

2.1. Failure Prediction Features
Each feature used for experiments in this work is derived from
the distance measurements or similarity scores produced by
the matching algorithm and is designed to capture informa-
tion about the nature of the score set. These features were
shown to be effective in [5]. Before each feature is calculated,
the scores are first sorted from best to worst. In our system,
for all features, we take the minimum of minimums over all
views for each gallery entry as the score for that particular
gallery entry. The top k scores are considered for feature vec-
tor generation.

1. ∆1,2 defined as (sorted score 1) - (sorted score 2). This is
the separation between the top score and the second best
score.

2. ∆i,j...k defined as ((sorted score i)− (sorted score j), (sorted
score i)− (sorted score j+1), . . . , (sorted score i)− (sorted
score k)), where j = i + 1. Feature vectors may vary in
length, as a function of the index i. For example, ∆1,2...k

is of length k − 1, ∆2,3...k is of length k − 2, and ∆3,4...k

is of length k − 3.

3. Take the top n scores and produce DCT coefficients. This
is a variation on [8], where the Daubechies wavelet trans-
form was shown to efficiently represent the information
contained in a score series.

2.2. Fusion Techniques
Decision level fusion is defined as data processing by inde-
pendent algorithms, followed by the fusion of decisions (based
upon the calculated results) of each algorithm. This idea can
be thought of as n different inputs to n different algorithms,
producing n decisions that are fused together to produce a
final decision that the system will act upon. The power of
decision fusion for our system stems from our need to fuse
data over independent modalities and corresponding recogni-
tion algorithms, as well as independent features over failure
prediction. Ultimately, we would like our system to give us
a final decision on whether or not the subject was correctly
recognized.

Fig. 2. A multi-modal recognition system incorporating fail-
ure prediction based fusion. The failure prediction analysis of
our system predicts both individual algorithm/modality fail-
ures, drives fusion weighting and predicts overall success or
failure of the fusion process.

The multistage nature of our system allows for fusion to
take place at various levels throughout the system. Referring
to the system diagram of figure 2, we see at the highest level
the need to fuse the results of failure prediction across modal-
ities. Thus, if one or more modalities fail, but at least one
other modality gives a usable match/distance score, we can
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accept the answers. Alternatively, if the highest-level predicts
failure across all modalities, we could take corrective action
via perturbations [8] or new sample acquisition. Moving to
lower levels within the system, we can fuse the recognition
algorithm results before failure prediction is performed, in a
blending approach similar to [7]. We can also take advantage
of our failure prediction features to fuse across all features af-
ter failure prediction has taken place. In our implemented sys-
tem, all features and fusion techniques are processed through
a Support Vector Machine learning module. Each fusion tech-
nique is described below.

• Threshold over all decisions across features:

With this technique, we learn a single threshold over failure
prediction decisions across features for a single modality,
or for failure prediction decisions across modalities.

• Individual thresholds across all decisions across features:

With this technique, we learn individual thresholds for each
failure prediction decision across features for a single modal-
ity, or for failure prediction decisions across modalities.

• Combine data from one or more algorithms in another al-
gorithm:

This technique was used effectively in [7] for a single modal-
ity, with some information from one or more algorithms en-
hancing the performance of another algorithm when added
to the data used for its feature computation. Fusion here
takes place before feature generation for failure prediction.

• Consider a superset of features as part of one feature vector
and fuse the feature vectors that have been calculated for
individual features before failure prediction. This blending,
including all information for each feature, is an attempt to

drive up performance in the machine learning enhancing
classification with longer, and ideally more distinct, feature
vectors:

The computational efficiency of this system (excluding
the underlying recognition system) may be considered in two
pieces: training and classification. To sort a series of scores
using the quicksort algorithm, O(n log n) operations are typ-
ically required. Computation for our best performing feature,
∆i,j...k is a simple series of linear operations (subtraction
over a set of scores), and is thus O(M) over M score se-
ries. The offline training of a SVM is computationally ex-
pensive, with a time complexity of O(M3) over M train-
ing examples (feature vectors derived from the M score se-
ries). The complete time needed for training the system is
O(nlogn + M + M3) per classifier. SVM classification is
a linear operation, of O(M). The complete time needed for
classification is O(n log n+2M) for fusion before SVM clas-
sification, and O(n log n+3M) for fusion after SVM classifi-
cation, where an extra pass over the SVM marginal distances
is needed. This linear complexity is well suited for real time
systems.

3. EXPERIMENTAL RESULTS
The first set of experiments evaluates the performance of the
fusion techniques over the baseline features for failure pre-
diction. The expectation was that the fused prediction tech-
niques would perform no worse than the original features, and
in most cases, outperform them. Table 1 shows the data sets
used for experimentation. The NIST-multimodal BSSR1 data
set [17] was used for all experiments. The subset of this data
(fing x face) set that provides true multi-modal results is rel-
atively small, providing match scores for 517 unique probes
across two face (labeled C & G) recognition algorithms, and
scores for two fingers (labeled li & ri) for one fingerprint
recognition algorithm. In order to gather enough negative data
for training and testing, negative examples for each score set
were generated by removing the top score for matching exam-
ples. In order to address the limited nature of the multi-modal
BSSR1 set, we created a “chimera” data set from the larger
face and finger subsets provided by BSSR1, which are not
inherently consistent across scores for a single user.

Results for a selection of data across both sets, all algo-
rithms, are presented as FPROC curves in figures 3 - 7. In-
dividual threshold fusion and multiple thresholds fusion (fig-
ures 3 and 4), as well as algorithm blending fusion across
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Data Set Training
Samples

Test
Samples

Face
Algo.

Finger
Algo.

BSSR1 600 200 2 1
BSSR1
“chimera” 6000 1000 2 1

Table 1. The data breakdown for machine learning with the
NIST BSSR1 and BSSR1 “chimera” multimodal data sets.

Fig. 3. FPROC curve depicting enhanced failure prediction
with single threshold and multiple threshold fusion failure
prediction results on BSSR1 face algorithm G. Baseline fea-
tures provided for comparison.

modalities (figures 5 and 6) improve the performance of fail-
ure prediction, compared with the baseline features. Feature
blending fusion (figure 7) produced results as good as the best
performing feature, but never significantly better. Different
combinations of blending were attempted, including mixing
all features together (mixed 5), combinations of ∆1,2,...10,
∆2,3,...10, and ∆3,4,...10 (deltas 2 and 3), ∆2,3,...10, ∆3,4,...10,
and DCT (deltas-DCT), ∆1,2 and DCT (1,2-DCT). While not
improving failure prediction performance, this fusion tech-
nique does automatically select the potentially best perform-
ing features.

The second set of experiments was designed to evaluate
the recognition system’s performance after processing by the
failure prediction fusion-based system. Figures 8 - 11 show
recognition results for single threshold fusion on BSSR1 and
the BSSR1 “chimera” set, multiple threshold fusion on BSSR1,
and multi-modal algorithm fusion for the BSSR1 “chimera”
set in the same ROC format as the results presented in [10]
and [11]. All results for fused prediction outperform the orig-
inal results for each set. Our results on BSSR1 are comparable
with the results reported in [10] and [11]. Though due to the
small size of BSSR1, this is not as meaningful as a compari-
son with a much larger set (such as our Chimera set) would be.
In the case of multiple threshold fusion for face algorithm C,

Fig. 4. FPROC curve depicting enhanced failure prediction
with single threshold and multiple threshold fusion failure
prediction results on BSSR1 “chimera” face algorithm C.
Baseline features provided for comparison.

Fig. 5. FPROC curve depicting enhanced failure prediction
with mixed modality algorithm blending fusion on BSSR1
finger li’s best performing features.

our results are clearly better than [10] and [11]. Moreover, the
best results of [10] and [11] were achieved by fusing across all
modalities and all algorithms. We can achieve nearly the same
results with a single algorithm for a single modality, leaving
us more potential for handling larger data, and an excellent
option if one or more modalities fail in a multi-modal system.
As is shown In figure 10, simply applying decision fusion over
the face C and G sets produces a result that is close to MSU’s
product fusion, and our weaker face G FP fusion results.

4. CONCLUSION
In this paper, we have developed a full multi-modal recogni-
tion system integrating fusion-based failure prediction that is
suitable for real-time use. With respect to failure prediction,
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Fig. 6. FPROC curve depicting enhanced failure prediction
with mixed modality algorithm blending fusion on BSSR1
“chimera” face algorithm G.

Fig. 7. FPROC curve depicting mixed feature fusion on
BSSR1 “chimera” face algorithm C. Fused features perform
as well as ∆1,2...10, which allows us to automatically isolate
it as the best feature.

four different fusion techniques were introduced and evalu-
ated, using FPROC curves, for this system using two data sets
derived from the NIST BSSR1 set. This is the first published
use of fusion to improve failure prediction. As the experi-
mental results show, three of the four techniques are able to
improve failure prediction, while one only achieves results as
good as the best performing baseline feature - but even that
allows for the automatic selection of the best performing fea-
ture.

This paper shows that using a failure prediction paradigm
provides a uniquely effective core for fusion of multiple al-
gorithms or modalities, and significantly enhances recogni-
tion system performance. This fusion via failure prediction
is comparable to, or better than, previously published fusion

Fig. 8. Performance on all of BSSR1 before and after single
threshold fused failure prediction. Our approach, when fus-
ing with finger li, produced perfect performance (due to the
small nature of this data set) and is not plotted. Product fu-
sion results, including li, from [11] provided for comparison.

Fig. 9. Performance on all of BSSR1 “chimera” before and
after single threshold fused failure prediction.

techniques, while utilizing less data to achieve its results. The
utility of multi-modal failure prediction is clear - if one modal-
ity has failed, we can fuse information from another modal-
ity that has succeeded, and achieve good recognition perfor-
mance. From a pure quality assessment for fusion, the failure
condition might not be evident. We encourage researchers to
consider the alternative to quality assessment presented in this
paper, especially for systems and problems that can benefit
from a per instance prediction of recognition failure.
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