
On Channel Reliability Measure Training for Multi-Camera Face Recognition

Binglong Xie, Visvanathan Ramesh, Ying Zhu Terry Boult

Real-Time Vision and Modeling Dept. Department of Computer Science
Siemens Corporate Research University of Colorado

Princeton, NJ 08540 Colorado Springs, CO 80933

Abstract

Single-camera face recognition has severe limitations when
the subject is not cooperative, or there are pose changes
and different illumination conditions. Face recognition us-
ing multiple synchronized cameras is proposed to overcome
the limitations. We introduce a reliability measure trained
from examples to evaluate the inherent quality of channel
recognition. The recognition from the channel predicted to
be the most reliable is selected as the final recognition re-
sults. In this paper, we enhance Adaboost to improve the
component based face detector running in each channel as
well as the channel reliability measure training. Effective
features are designed to train the channel reliability mea-
sure using data from both face detection and recognition.
The recognition rate is far better than that of either single
channel, and consistently better than common classifier fu-
sion rules.

1. Introduction
Traditionally face recognition was performed on 2D im-
ages, often frontal or near-frontal view faces. There are
statistical methods including PCA (Principal Component
Analysis, or Eigenfaces) [1] and LDA (Linear Discriminant
Analysis, or Fisherfaces) [2], Neural Network approaches,
EBGM (Elastic Bunch Graph Matching) [3] and so on. In
general 2D face recognition methods suffer from pose and
illumination changes, because they rely on seen images
while the same face can generate novel image instances by
varying the pose and lighting conditions. 3D face recog-
nition methods include range-based recognition [4], stereo
reconstruction [5], SFS (Shape From Shading) [6], 3D mor-
phable model [7], etc. The 3D reconstruction used in these
methods is often either intrusive, slow, inaccurate, or re-
quiring manual initialization, and is not appropriate for real-
time applications. Currently face recognition still has some
severe limitations in typical applications like surveillance
and access control, for example, when the subject is not co-
operative and turns away from the camera, the accuracy of
face recognition can be marred significantly [8].

We propose a face recognition system using two cam-
eras [9]. In each channel, component-based face detector
that is trained with a modified AdaBoost algorithm detects
faces with pose and illumination changes and LDA-based
face recognition is performed to recognize the normalized
faces. The recognitions from the two channels are fused to
get the final results, using a selection scheme based on a
channel reliability measure trained inherent to the individ-
ual channel performance.

In this paper, we mainly discuss a modified AdaBoost
algorithm and effective weak classifier design for reliability
measure training. In selecting a weak classifier for the cur-
rent strong classifier, the modified AdaBoost tries to lower
the empirical training error instead of merely minimizing
the error bound as in AdaBoost. Our experiments show that
it provides an alternative way to AdaBoost with better per-
formance. We also design effective features from face de-
tection and recognition to train the channel reliability mea-
sure using the modified AdaBoost. The recognition rate of
this approach is far better than that of either single channel,
and consistently better than common classifier fusion rules.

The paper is organized as follows. Section 2 revisits the
basic AdaBoost algorithm, as this is referred to throughout
the paper. Section 3 briefly introduces the system we use to
perform multi-camera face recognition. Section 4 describes
the modified AdaBoost algorithm. Section 5 shows how
the features and rules are designed to train the reliability
measure. In Section 6 we show the experiments and results
of the modified AdaBoost, reliability measure training, and
system performance. We then conclude in Section 7.

2. AdaBoost
The AdaBoost learning algorithm was first introduced by
Freund et al[10]. In AdaBoost, the rough base rules are
called the weak classifiers, and they are combined into the
strong classifier that is much more accurate than any of the
individual weak classifiers.

For two-class AdaBoost, the sample set {(xi, yi)}, i =
1, ..., m contains pairs of data xi and its label yi, where xi ∈
X , and yi ∈ Y = {−1, +1}. X is the sample data space,



Given: Samples {(xi, yi)}, i = 1, ..., m

Initialize: Weights D1(i) = 1
m

Iteration: For each t = 1, ..., T :

• Normalize samples weights Dt(i)← Dt(i)∑
m

i=1
Dt(i)

• Retrain weak classifiers {hj(x)} with Dt

• Choose a ht having least weighted error
εt =

∑
{i;yi �=ht(xi)} Dt(i)

• Compute αt = 1
2 ln 1−εt

εt

• Update sample weights
Dt+1(i) = Dt exp(−αtyiht(xi))

Output: The strong classifier:

h(x) = sign
(∑T

t=1 αtht(x)
)

Figure 1: Basic AdaBoost algorithm

and Y is the label space. The samples with label +1 are
called positive samples, or object samples; and the samples
with label −1 are called negative samples, or non-object
samples. There exist some weak classifiers, {hj(x) : X →
Y }. AdaBoost finds the strong classifier y = h(x) : X →
Y using the process described in Figure 1.

In each step, AdaBoost selects a weak classifier that has
the least weighted error εt, which is a summation of weights
of samples that are incorrectly classified. The samples are
then reweighted according to the weak classifier’s classifi-
cation correctness. The weight updating scheme makes the
next weak classifier focus more on the incorrectly classified
samples. Step by step, the strong classifier is ‘boosted’ and
performs better and better.

The iterative process terminates when certain conditions
are met, one of them uses empirical training error, or in
short, training error. The training error of a strong classi-
fier h(x) is defined as ee =

∑
{i;yi �=h(xi)}

1
m . For exam-

ple, when the training error of the current strong classifier
is small enough (e.g., 0) the training is over.

3. System Overview

The multi-camera face recognition system is depicted in
Figure 2. The face is captured by two cameras, and each
channel has independent face detector and recognizer. The
channel reliability measure, f , is estimated for each chan-
nel, and the more reliable channel is selected as the final
recognition, subject to a threshold on reliability.

Figure 3: Face components, on the template face(Left) and
individual(Right).

3.1. Component-Based AdaBoost Face Detec-
tion

We use a component-based face detector, which is robust
with face pose and illumination variations, because the
small components are less subject to those variations and
the fusion of the components allows moderate geometric de-
formations of the configuration of the components [11]. Our
facial components include left eye, right eye and the lower
face component covering mouth and part of nose, see Fig-
ure 3. The component detectors are trained with the modi-
fied AdaBoost algorithm (See Section 4) using Haar wavelet
features that can be evaluated very quickly with an integral
image [12]. When the components are detected, we apply
statistical fusion of individual component detectors with a
probabilistic geometric face model [13]. This gives us ro-
bust face detection and accurate face localization, which is
very important for face recognition.

3.2. LDA-Based Face Recognition
The detected face is recognized with an LDA recognizer
using the nearest neighbor method in the LDA subspace.
The matches are sorted by the distance, the top match with
the smallest distance.

3.3. Fusion by Selection from Trained Relia-
bility Measure

When multiple face recognizers yield individual recogni-
tions, fusion can be performed to improve the performance.
The common combining rules: minimal geometric mean,
minimal arithmetic mean, minimal median, minimal mini-
mum, minimal maximum and majority voting are summa-
rized in [14] by assuming statistical independence and so
on [15]. These common fusion rules are however ‘rigid’,
meaning that they cannot take advantage of the available
examples for better fusion.

We perform fusion using our learning techniques. The
training examples are processed by channels and we collect
the data x from face detection and recognition, and label it
as positive y = +1 if the top match corresponds to the ex-
ample’s true identity, or y = −1 otherwise. So we put the
problem into the AdaBoost setting. Friedman [16] proved
that in an additive logistic regression model, when the Ad-
aBoost error bound is minimized by choosing appropriate



Figure 2: Reliability based selection of multiple channel face recognition.

f(x) in boosting, the channel reliability P (y = +1|x) is a
monotone function of the strong classifier response f(x):

P (y = +1|x) =
ef(x)

ef(x) + e−f(x)
=

e2f(x)

e2f(x) + 1
, (1)

where f(x) is ‘unthresholded’ strong classifier response:

f(x) =
T∑

t=1

αtht(x) (2)

Therefore, we can train the function f(x) to represent the
channel reliability equivalently using AdaBoost. If we can
find a good representation of channel sample x and train an
appropriate strong classifier response function f(x), we can
robustly estimate the channel reliability.

4. Modified AdaBoost
AdaBoost does not improve the empirical training error di-
rectly, instead, it improves the error bound of the strong
classifier [10]. We are more interested in the empirical
training error, i.e., the performance of the strong classifier
on the training examples, than the error bound, because the
bound is too loose [17]. However, the prediction based on
weighted error in basic AdaBoost is not always aligned with
the empirical training error. We use a modified version of
AdaBoost as shown in Figure 4.

The difference from the basic AdaBoost is that in each
step t, it choses n weak classifiers instead of one weak clas-
sifier as temporary candidates. It then checks if the first
temporary candidate weak classifier in the chosen list im-
proves the empirical training error. If it does, the weak clas-
sifier is accepted; otherwise it looks at the next temporary
candidate. This tries to get a strong classifier that is verified
to be empirically better than that of the previous boosting
step. Note that it does not try to look for the weak classifier
that improves the empirical training error most. It finds the

Given: Samples {(xi, yi)}, i = 1, ..., m

Initialize: Weights D1(i) = 1
m

Iteration: For each t = 1, ..., T :

• Normalize samples weights Dt(i)← Dt(i)∑m

i=1
Dt(i)

• Retrain all weak classifiers {hj(x)} with Dt

• Choose top n weak classifiers with least
weighted errors εj =

∑
{i;yi �=hj(xi)} Dt(i), de-

note as pairs {ht
k, εt

k}k=1,...,n.
For each k = 1, ..., n:

– Let ht = ht
k, εt = εt

k

– Compute temporary αt = 1
2 ln 1−εt

εt

– Get a temporary strong classifier

ht(x) = sign
(∑t

l=1 αlhl(x)
)

– If ht(x) lowers training error ee, add ht(x)
to strong classifier.

– Otherwise, move to next k.

• Update sample weights
Dt+1(i) = Dt exp(−αtyiht(xi))

Output: The strong classifier:

h(x) = sign
(∑T

t=1 αtht(x)
)

Figure 4: Modified AdaBoost algorithm

weak classifier with least weighted error and improving the
empirical error. This is based on the observation that if only
the empirical training error is targeted, the generalization
power of AdaBoost is hurt, and the boosting process can be
trapped in a local minimum faster, in turn limits itself from
improving the empirical training error more. If none of the
n temporary candidate weak classifiers improves the empir-



ical error, it simply falls back to the basic AdaBoost and
uses the first candidate.

The choice of n is a tradeoff among generalization, em-
pirical error oriented training, and training time. If n is 1,
the modified AdaBoost falls back to basic AdaBoost. If n is
large, it can potentially improves the empirical error more
at the current step, but it may again hurt the performance in
future training iterations, and training is slower.

5. Weak Classifier Design for Reliabil-
ity Measure

5.1. Example Data Space
The example data space X should capture the variation of
the channel data. Even though the image is the source of
the whole channel processing, the information in it is not
directly useful for reliability estimation. Instead, we col-
lect the output of the face detector and output of the face
recognizer and form a compound vector x as our exam-
ple variable. This makes sense, because the reliability of
the channel depends on how good both face detection and
recognition are. This is in contrast to common fusion rules
as they only try to fuse the face recognitions.

Our example data consists of three basic data pieces:

Face detection geometric data xfdgeo The direct output
of face detector includes the detected individual com-
ponent locations, sizes, confidences and overall face
detection confidence.

Face detection Haar wavelets xfdrs In the individually
trained face component detectors, there are weak clas-
sifiers using Haar wavelets. The responses of these
weak classifiers not only serve the component detec-
tors, but also provide valuable information about the
component and face, which can be used for channel
reliability training.

Face recognition matching distances xfr The output of
face recognizer includes a list of matching distances
(or scores), one for each class.

The example data is denoted as x =
[
xT

fdgeo,x
T
fdrs,x

T
fr

]T

.

5.2. Feature Design
In any boosting, the key to get an effective strong classifier
is the design of weak classifiers matching the nature of spe-
cific classification problem. A feature, also called a filter, is
a function g(x) mapping the input x into a feature response
space Z , in our case, Z = R = (−∞, +∞). A weak clas-
sifier then imposes another mapping from Z to the label
space Y . We use both binary and trisegmental thresholding
to derive weak classifiers from a feature.

Figure 5: Face geometric configuration. A, B and C are the
positions of left eye, right eye and lower face components of
the detected face, respectively. D is the middle point of A
and B. Skewness is defined as CE/AB. Tilting is defined
as DE/AB.

We employ five categories of features for reliability mea-
sure training for a two-channel setting:

Face detection geometric (fdgeo) features These features
are defined on xfdgeo, including literal overall face
confidence, component confidences, face scale, face
skewness and tilting (see Figure 5) and so on.

Face detection Haar wavelets (fdrs) features Currently
the left eye, right eye and lower face detectors on a
64x64 pixel face use 98, 79, and 99 Haar wavelet
features respectively. These features from xfdrs are
directly used as reliability measure features.

Face recognition matching distance (fr) features There
are 9 types of features defined on the 10 best matching
distances output xfr by the face recognizer, including:
literal distances; distance differences; normalized
distances to top match; differences of mean distance
to top match, either plain or normalized; standard
deviations of distance, either plain, or normalized by
mean, or normalized by difference of mean to top
match; and slope changes of distance to top match.

Joint channel (joint) features The information from the
other channel also could help to determine if this chan-
nel is reliable because there is correlation between two
channels in fact. The joint features are the differences
of the single-channel features of the two channels.

Consecutive time (conti) features Assuming the correla-
tion along time of the face appearing in any channel,
the features are also correlated over time. The stability
of the features is used to design consecutive time fea-
tures. These features are the differences of the single-
channel features of the two consecutive frames.



6. Experiments and Results

6.1. Modified AdaBoost Training
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Figure 6: Modified AdaBoost training for the left eye.
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Figure 7: Modified AdaBoost training for the lower face.

Two examples of training errors for modified AdaBoost
with 1862 positive and 6231 negative examples are shown
in Figures 6 and 7. Notice n = 1 corresponds to basic Ad-
aBoost. Our examples show that in general modified Ad-
aBoost performs better for an appropriate n, n = 2 in the
examples. If n is too large, for example, n = 5, the results
are not consistently better than those of basic AdaBoost.
In practice we try with different n and take the best strong
classifier.

6.2. Reliability Measure Training

We collect 33 synchronous videos from 33 subjects, each
has about 683 frames, with various poses. Around 481
frames/subject are used for reliability training. The train-
ing errors are shown in Figure 8. It is obvious that adding
more features results in a better trained reliability measure.
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Figure 8: The channel reliability training errors with dif-
ferent feature sets. Training of fdgeo features-only strong
classifier stops early because it has only 12 weak classifiers.

6.3. System Performance

After the reliability measure is trained, we use the testing
frames (about 202 frames for each subject) to test the sys-
tem performance. The detection rate is defined as the num-
ber of frames with the selected channel’s reliability over a
threshold divided by the total frame number. The recog-
nition rate is defined as the number of detected and cor-
rectly recognized frames divided by the total frame num-
ber. The performance of the system using the modified Ad-
aBoost and reliability measure-base selection is compared
to the common fusion rules in Figures 9 and 10. In Figure
9, generally fusions perform better than any of the single
channels, channel 0 or channel 1, except that the minimal
maximum rule is worse than channel 0 but better than chan-
nel 1. The perfect selection is the selection by human at the
maximal detection rate, which is the upper limit of recogni-
tion rate using selection. Especially, our fusion by trained
reliability is the closest to the perfect selection as shown in
partial performance curves magnified in Figure 10. We use
leave-one-out strategy to sample the 202 testing frames for
each subject, and estimate the confidence of the recognition
rate. As shown in Figure 10, our fusion by selection outper-
forms the best common fusion rule, the minimal minimum,



with high confidence. The curves are well separated with
±3σ, which corresponds to confidences larger than 99.7%.
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Figure 9: Performance of different fusions.
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Figure 10: Performance of different fusions (blown-up).

7. Conclusion
We introduce a modified AdaBoost algorithm and effec-
tive weak classifier design from face detection and recogni-
tion for reliability measure training, in a multi-camera face
recognition system with fusion by reliability-based selec-
tion. The modified AdaBoost improves boosting to a lower
training error with same number of weak classifiers. The
recognition rate of this approach is far better than that of
either single channel, and consistently better than common
classifier fusion rules.
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