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Abstract

Stereo reconstruction is an important research and application area, both for general 3D reconstruc-
tion and for operations like robotic navigation and remote sensing. This paper addresses the determi-
nation of parameters for a stereo system to optimize/minimize 3D reconstruction errors. Previous work
on error analysis in stereo reconstruction optimized error in disparity space which led to the erroneous
conclusion that, ignoring matching errors, errors decrease when the baseline goes to infinity.

In this paper, we derive the first formal error model based on the more realistic “point-of-closest-
approach” ray model used in modern stereo systems. We then show this results in finite optimal baseline
that minimizes reconstruction errors in all three world directions. We also show why previous oversim-
plified error analysis results in infinite baselines. We derive the mathematical relationship between the
error variances and the stereo system parameters. In our analysis, we consider the situations where
errors exist in only one camera as well as errors in both cameras. We have derived the results for both
parallel and verged systems, though only the simpler models are presented algebraically herein. The
paper includes simulations to highlight the results and validate the approximations in the error propa-
gation. The results should allow stereo system designers, or those using motion-stereo, to improve their
system.

1 Introduction
An important task in stereo reconstruction is how to obtain accurate three-dimensional reconstruction
positions even when errors exist in matching/locating of points. Prevailing wisdom, based on decade’s
old work, is that larger baselines are better, at least until the gross matching errors and 3D geometry-
variations dominate the error the baseline induces from localization error. As part of a project looking
for motion-stereo, using a single-camera UAV-based measurements, we sought to determine the optimal
baseline to balance these errors. While it turned out it was too difficult to model the probability and
impact of gross matching errors, our effort led us to question the validity of existing models which result
suggest “bigger is better”. This paper may appear is somewhat theoretical, but the underlying equations
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Paper preprint for IEEE WACV 2011 1 INTRODUCTION
for optimal designs are applicable to design/construction of stereo systems and for parameter selection
for motion-stereo systems. The new error models could also be useful in stereo algorithms that attempt
to optimize reconstruction with respect to model errors. In the limited space we could not present both
the useful theory and details of the application.

In practical applications such as stereo navigations [9], object tracking [5], biometrics, remote sensing,
motion-based stereo and wave height monitoring [2], it is often desirable to know how to determine the
extrinsic parameters such as the baseline and the rotation angle between cameras or intrinsic parameters
such as focal length, so that the operational errors will be minimized. We noted that the error of interest
needs not be the traditional error along the viewing direction, but may be the error in the world space,
e.g. “height” of a potential obstacle, where both in-image localization errors and the depth computation
error, impacts the overall error in the height measurement. For example, if the camera were almost
parallel to the floor, the height of the obstacle is measured within the image plane, and errors in depth
mostly impact where the obstacle is, not its height.

This two observations lead to new questions/models for stereo errors and for camera positioning. In
order to determine the optimal parameters of a stereo system to minimize the reconstruction errors, we
need to know the relationship between these parameters and the reconstruction errors. In the last two
decades, many papers analyzed this problem. By the errors modeled, these methods can be roughly
classified into two groups:

The first group uses scalar errors such as bounded quantization errors or worst case analysis [1, 13, 3,
8, 4, 15] and derives upper bounds or lower bounds of errors or the probability of errors less than a given
tolerance. As Matthies pointed out in [9], “the uncertainty induced by triangulation is not a simple scalar
function of distance to the point; it is also skewed and oriented. Scalar error measures do not capture
these distinctions in shape.” In addition, many of these papers use relative errors in their analysis, the
parameters in which we are interested, such as the baseline, are canceled out from the relative errors and
cannot be optimized via the relative error formula.

The second group of stereo error analysis papers use Gaussian error models [9, 11, 12] or simply
analyze the absolute error [16].

Both these groups of papers share two important common features. For those papers that have analyti-
cal error results on the relation between the systems parameters and the reconstruction errors, the results
show that the depth reconstruction errors decrease as the baseline increases, and thus are minimized
when the baseline goes to infinity.

The second is how they use triangulation in their analysis. It is well known from triangulation that the
reconstruction point is the intersection point of the two view rays, if there is no noise, but that in general
the two viewing rays will not intersect in the space if noise exists in 3D [14]. In operational stereo
systems, people use the point of closest approach of the two noisy rays. However, all the error analysis
papers simply use noise free version for simplicity or even analyze errors in 2D case when dealing with
3D errors [10, 16, 15, 9].

One of our key contributions is the derivation of stereo error models using the point of closest ap-
proach for noisy rays. Given this more realistic model, we derive the error formulas for all three world
dimensions. Our second contribution it to use these models to define optimal baseline, which in general
is finite. From the model, we can optimize system parameters, e.g. optimal viewing angle for obstacle
height measurements, or the optimal baseline for a verged stereo system with targets at 1-3 meters dis-
tance. The initially surprising result, that stereo systems have finite optimal baselines, follows directly
from the model.
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Figure 1. Stereo system setup and the relationship between the verge angle ϕ and the rotation angle γ

Section 2 describes the stereo system model used in this paper. Section 3 shows how to determine
the reconstruction point. Section 4 analyzes the error propagation from the image frame to the camera
frame and to the world frame, gives the formulas for finite optimal baselines when errors are modeled
in only one camera. Section 5 shows the error propagation when errors are modeled in both cameras.
Section 6 shows simulation results and section 7 summarizes the paper.

2 Description of Stereo System
The stereo system used in this paper is shown in Figure 1. The basic assumption used in this paper is
that the cameras used are pinhole cameras or well calibrated optically. Therefore, we do not consider
the lens distortion problems in this paper. For simplicity, further assume the two cameras in the stereo
system have the same focal length f . Now, let us define the relationships between different reference
frames.

Let Pl and Pr be the coordinates of a point P in the left and right camera frame respectively; (xl, yl)
and (xr, yr) be the projection of P onto the left and right camera plane.

The relation between Pl and Pr is:

Pr = Rc(Pl − Tc)

where Rc is the rotation matrix given by:

Rc =

 cos(γ) 0 sin(γ)
0 1 0

− sin(γ) 0 cos(γ)


Without loss of generality, let Tc = [B 0 0]T . B is the baseline. As shown in Figure 1, the verge

angle ϕ = γ
2
. In the analysis of this paper, we will assume Rc = I3×3. That is, the principle axes of the

two cameras are parallel. The analysis steps for the cases where two cameras are not parallel are same.
However, the analytical results for those cases are too long to include in the paper, and will appear in a
yet to be be released technical report.

In this paper, we generally use the left camera frame as the reference frame. The relation between the
left camera frame Pl and the world frame Pw is given by:
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Pw = Rw(Pl − Tw) (1)

where Rw is the rotation matrix and Tw is the translation vector. Rw is given by:

Rw =

 −1 0 0
0 − cos θ − sin θ
0 − sin θ cos θ

 (2)

where θ is the rotation angle. Because of the definition of our coordinate system as shown in Figure
1, Rw is obtained by rotation along the x axis followed by sign changing in the x and y directions.

The rotation angle θ is also the view angle. We consider the view angle case because it is commonly
used in applications.

3 Determination of Reconstruction Point
When both the intrinsic and extrinsic parameters of the stereo system are known, the reconstruction
can be easily done by triangulation: the intersection of ray OlPl and OrPr is the reconstruction point.
However, it is well known that these two rays may not intersect in space if Pl and Pr are not accurate.

Two popular methods are used in practice. One method takes the point whose distances to both rays
are minimized [14]. The other method seeks a point which gets a new pair of projections onto the two
cameras, and the distance between the new projection points and Pl,Pr is minimized [7]. We will use the
former in our analysis because it can be used analytically while the latter cannot. We briefly summarize
the method below.

Let the point determined from (xl, yl) and (xr, yr) be P2 in the left camera frame. Let l = [xl, yl, f ]T ,
r = Tc + βRT

c [xr, yr, f ]T , and w = l × RT
c [xr, yr, f ]T . In the following sections, we consider the case

where γ = 0, then α,β and λ can be determined by the following equation.

αl + λw = r (3)

P2 is given by:

P2 = αl +
λ

2
w (4)

where

α = xrylyr−xly2r+(xr−xl)f2
∆

B

λ = B(yr−yl)f
∆

∆ =

∣∣∣∣∣∣
xl −xr (yl − yr)f
yl −yr (xr − xl)f
f −f xlyr − xryl

∣∣∣∣∣∣
(5)

In noise free cases, P2 is reduced to

P2 =
B

d

 xl
yl
f

 (6)

where B is the baseline, d = xl − xr is the disparity.
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4 Errors in One Camera
We now turn to the error propagation in the stereo system when errors are modeled only in one camera,
e.g. assuming the point in the left image is the definition of the “correct” feature. This is a common
approach for a fixed and rigid stereo system. Assume the left camera coordinate (xl, yl) for a point is
accurate, and the errors in the right camera can be modeled by zero mean Gaussian distributions with
covariance matrix:

Σ =

[
σ2
x 0

0 σ2
y

]
(7)

The mapping defined in equation (4) is nonlinear but in general quite smooth. If we model this
mapping as approximately affine in the vicinity of the mean of the distribution, then the errors of P2 in
the camera frame is also a Gaussian distribution with the following parameters [6]:

µp2 =
B

d
[xl, yl, f ]T (8)

Σc = JcΣJ
T
c (9)

Jc =
B

d2


xl

−xlxryl
y2l +f2

yl
−xry2l −0.5(xr−xl)f2

y2l +f2

f −0.5ylf(xl+xr)

y2l +f2

 (10)

Jc is the Jacobian matrix computed from the mapping (4).
In the remaining part of the paper, we use following abbreviations to save space. Let J2 = xry

2
l +

0.5(xr − xl)f 2, J3 = 0.5ylf(xl + xr) ,J4 = xly
2
l + 0.5(xl − xr)f 2 and b = y2

l + f 2.

4.1 Optimal Finite Baselines
From Σc obtained by equation (9), we can obtain the variances in three directions as following:

σ2
cx =

x2
lB

2

d4

(
σ2
x + x2

ry
2
l

σ2
y

b2

)
(11)

σ2
cy =

B2

d4

(
y2
l σ

2
x + J2

2

σ2
y

b2

)
(12)

σ2
cz =

B2f 2

d4

(
σ2
x +

y2
l (xl + xr)

2

4

σ2
y

b2

)
(13)

These variances are expressed in the accurate projection coordinates (xl, yl) and (xr, yr). Note yl =
yr. Using equation (14), these variances are then represented by the projection coordinate (xl, yl) and the
Z coordinate of a point in the left camera frame. Finite optimal baselines can be obtained by minimizing
these variances.
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• Optimal baseline to minimize the depth error Let us first determine the finite optimal baseline for

the most popular depth errors. To obtain this optimal baseline, we fix the left camera and move the
right camera to change the baseline. So xr will change with the baseline. Let Pl = [X Y Z]T be a
point represented in left camera frame. The relation between the baseline B and xr is given by:

xr = xl −
B

Z
f (14)

substitute equation (14) into equation (13), then

solve the equation dσ2
cz

dB
= 0, we get the optimal baseline to minimize the depth error.

Bcz =
2Z

f

(
xl +

b2σ2
x

xly2
l σ

2
y

)
(15)

• Optimal baseline to minimize width and height errors
Following similar steps, we can determine the optimal baselines for minimizing the width and
height errors:

Bcx =
Z

f

(
xl +

b2σ2
x

xly2
l σ

2
y

)
(16)

Bcy =
2Z

f(f 2 + 2y2
l )

(
xly

2
l +

b2σ2
x

xlσ2
y

)
(17)

Note that in this case, we have Bcz = 2Bcx.

We showed if we use the mapping (4), optimal baselines exist. Next, we will explain why using mapping
(6) does not yield finite optimal baselines.

4.2 What If Noise-free Triangulation Is Used
As we mentioned in the introduction, prior papers on stereo error analysis assume ideal ray-intersection
for stereo reconstruction. Even though most are aware of the fact that with noise the two rays OlPl
and OrPr will no longer intersect in space, they use noise-free triangulation or analyze the 3D errors
in a reduced 2D space for simplicity. We now show why such simplification leads to infinite baseline
conclusion in those papers.

When the ideal triangulation is used, the mapping is reduced to mapping (6). The corresponding
Jacobian matrix is shown in equation (18). Note the item xl − xr in this Jacobian matrix can only
contribute 1

B
in the propagated covariances.

J̃c =
B

d2

 xl 0
yl xl − xr
f 0

 (18)

The computed variances in three directions are:

σ̃2
cx =

x2
lB

2σ2
x

d4
=
x2
lZ

4σ2
x

B2f 4
(19)
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Figure 2. Error variances in width, height and depth (top to bottom) with all errors in single-camera. Though the
magnitude are different, the overall shapes are very similar for the dual-camera error model.

σ̃2
cy =

(y2
l Z

2σ2
x +B2f 2σ2

y)Z
2

B2f 4
(20)

σ̃2
cz =

B2f 2σ2
x

d4
=
Z4σ2

x

B2f 2
(21)

In order to minimize these errors , the baseline B has to be as large as possible and tends to infinity.
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4.3 Error Propagation to World Frame
As stated, there are applications where the goal is not optimal range estimates, but optimal measurements
in the world coordinate systems. In this section, we consider the errors propagated to the world frame.
Similarly, the error of mapping (4) propagated from the camera frame to the world frame may also be
modeled by Gaussian distributions with the following parameters:

µpw = Rw(µp2 − Tw) (22)

Σw = RwΣcR
T
w (23)

From the covariance matrix (23), the variances for width, height and depth (in x,y and z directions
respectively) are:

σ2
wx =

B2x2
l

d4

(
σ2
x + x2

ry
2
l

σ2
y

b2

)

σ2
wy =

B2

d4

(
(yl cos θ + f sin θ)2σ2

x + (J2 cos θ + J3 sin θ)2
σ2
y

b2

)

σ2
wz =

B2

d4

(
(yl sin θ − f cos θ)2σ2

x + (J3 cos θ − J2 sin θ)2
σ2
y

b2

)
The overall error σ2

w = σ2
wx + σ2

wy + σ2
wz is:

σ2
w =

B2

d4

(
(x2

l + y2
l + f 2)σ2

x + ((xlxryl)
2 + J2

2 + J2
3 )
σ2
y

b2

)
The variances of errors in three directions over a small region are shown in Figure 2. Due to the view

angle θ, the variances of height and depth are influenced by θ as shown in Figure 4, and as expected, the
variances of width and overall errors are not. Similarly, the optimal baselines can be computed:

• Optimal baseline to minimize the depth error

Bwz =
2Z(yl sin θ − f cos θ)(x2

l y
2
l σ

2
y + b2σ2

x)

xlylfσ2
y(2y

2
l sin θ + f 2 sin θ − yl cos θ)

• Optimal baseline to minimize the height error

Bwy =
2Z(yl cos θ + f sin θ)(b2σ2

x + x2
l y

2
l σ

2
y)

xlylfσ2
y(2y

2
l cos θ + f 2 cos θ + ylf sin θ)

• Optimal baseline to minimize the width error

Bwx = Bcx.
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• Optimal baseline to minimize the overall error

Bwa =
Z

f

(
b2σ2

x

xly2
l σ

2
y

+ xl

)
(24)

Note the optimal baseline value may be negative for some points. For a single point, the negative
baseline means changing the right camera to the left camera. However, if we require the baseline to be
positive, this negative optimal baseline means there is no finite positive optimal baseline for that point,
so at that point, the optimal positive baseline is infinite. In practical applications, an area is generally
considered instead of a single point, given an optimization criteria, a finite optimal baseline can be obtain
for that area using the single point optimal baseline formulas over that area.

The variances of errors and optimal baselines in the camera frame as shown in section 4.1 can be
obtained from the corresponding values in the world frame by setting θ to zero.

4.4 Consider Image Frame Directly
In above analysis, the projection of a point to the image plane is expressed in terms of the camera frame
coordinates. If we know all of the intrinsic parameters of the cameras, the error propagation between the
image frame and the camera frame is given below:

µim =

[
s−1
x 0

0 s−1
y

]
(µ− [ox oy]

T ) (25)

Σim =

[
σ2
x

s2x
0

0
σ2
y

s2y

]
(26)

where ox, ox, sx, sy are the intrinsic parameters of the cameras. In our error model, the influence of
quantification errors is assumed to be absorbed into the covariance matrix Σ.

5 Errors in Two Cameras
Now we consider the case where errors are modeled in both cameras. This is particularly useful when
doing verging stereo systems or motion-based stereo. Due to the similarity in the analysis steps, we
do not repeat the whole process, but give the results in the final steps directly. As showed before, the
variances of errors and optimal baselines in the camera frame can be computed from corresponding
values in the world frame, so we only give the results in the world frame.

For simplicity of presentation, we assume the errors in both cameras share the same covariance matrix.
The combined covariance matrix Σ2 is:

Σ2 =


σ2
x 0 0 0

0 σ2
y 0 0

0 0 σ2
x 0

0 0 0 σ2
y

 (27)

The mean values are computed the same way as shown in equation (22). The corresponding Jacobian
matrix Jc2 is:

Jc2 =
B

d2

 xl
−xlylxr

b
−xr xlylxr

b

yl
−J2
b

−yl J4
b

f −J3
b

−f J3
b

 (28)

9
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The covariance matrix propagated into the world frame can be computed as Σw2 = RwJc2Σ2J

T
c2R

T
w.

From Σw2, the variances of errors in all three directions are:

σ2
wx2 =

B2

d4

(
(x2

l + x2
r)σ

2
x +

2x2
l y

2
l x

2
r

b2
σ2
y

)
(29)

σ2
wy2 =

B2

d4

(
2(f sin θ + yl cos θ)2σ2

x +
σ2
y

b2
(30)(

(J2 cos θ + J3 sin θ)2 + (J4 cos θ + J3 sin θ)2
))

σ2
wz2 =

B2

d4

(
2(yl sin θ − f cos θ)2σ2

x +
σ2
y

b2
(31)(

(J3 cos θ − J2 sin θ)2 + (J4 sin θ − J3 cos θ)2
))

The variance of the overall error σw2 is defined as:

σ2
w2 = σ2

wx2 + σ2
wy2 + σ2

wz2

The optimization of variances in terms of B results in the optimal baselines for x,y,z directions and
overall errors:

Bwx2 =
2xlZ(b2σ2

x + x2
l y

2
l σ

2
y)

f(b2σ2
x + 2x2

l y
2
l σ

2
y)

xl 6= 0 (32)

Bwy2 = Bwz2 =
2Z

f

(
xl +

b2σ2
x

xly2
l σ

2
y

)
(33)

Bw2 =
2Z(x2

l + y2
l + f 2)(b2σ2

x + x2
l y

2
l σ

2
y)

xlf(b2σ2
x + y2

l (2x
2
l + y2

l + f 2)σ2
y)

(34)

Note that optimal baselines for y and z directions do not depend on θ even though the variances of
errors in these directions are affected by θ. Importantly, we can optimize the baseline for overall error
and don’t need to modify it for different world measurements. Not surprisingly, optimal stereo system
height and viewing angle, do depend on the measurement desired, but are too complex to present herein.

While not presented in detail herein, as the equations start to become pages long, The above propa-
gation analysis can be directly, and with Maple easily, applied to the case of verged cameras with errors
modeled in one or both cameras. Again, they result in finite optimal parameters, with in general smaller
optimal baselines.
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Figure 3. Error in world coordinates for various baselines B when xl = yl = 150 pixels. Top graph shows for
single camera model, bottom is for two camera error model. Note the differences in vertical scale. Each graph
shows world error in each of 3 dimensions. The optimal baseline value is obvious in the graphs.

Figure 4. Error in world coordinates for various view angles. Top graph shows the height error, bottom is for the
depth error. The optimal baseline value changes with the view angle.
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Figure 5. The relationship between σx
σy

and the optimal baseline. Smaller ratio leads to shorter optimal baseline.

6 Simulations
The simulations are carried out using Matlab. The parameters for the stereo system and the error models
are defined as follow. The camera focus length is set to 17mm. The cameras have 1/3 inch CCDs, that
is, one pixel is around 0.148mm. The standard derivation of the error in y direction is assume to be
σy = 1 pixel. The standard derivation in x direction is set to σx = 0.2σy unless otherwise specified.
The simulation is done on one point with xl = 150 pixel,yl = 150 pixel and Z = 100 mm. In the
simulation, the sample size for a point is 50000.

Figure 3 shows the error in width, height and depth for both the single error model and the two camera
error model. The simulated results as shown in markers match the theoretical results as shown in lines
well. The optimal baselines for three directions are obvious in the graphs. Figure 4 shows the error in
height and depth for the single error model. The graph clearly shows that the reconstruction error and
the optimal baseline are affected by the view angle. This result suggests that a carefully selected view
angle may reduce the reconstruction error or the optimal baseline.

Figure 5 shows the relationship between the ratio σx
σy

and the optimal baseline in three directions for
the single error model. The optimal baseline is affected by the ratio of variances instead of the variances.
Smaller ratio leads to shorter optimal baseline. The two camera error model has similar results, which
are not shown.

Figure 6 shows how the verge angle affects the reconstruction error and the optimal baseline in the
single error model. The relationship between the verge angel ϕ and the rotation angle γ is shown in
Figure 1. The distance Z has an influence on the shape of these curves. However, these curves share
some common characteristics. From the graph, we observe the optimal baselines for three directions
decrease, gradually converge to same values and increase again as the verge angle increases. The error
quickly decreases to a very low level, and may increase again as the verge angle increases. From the
simulation results, we can see for a properly selected verge angle, a short optimal baseline and a very
low error level can be obtained.

Figure 7 shows how the verge angle affects the optimal baseline and the reconstruction error in the
case of two camera error model. Unlike the single error model, the optimal baselines do not converge
to same values. However, they decrease to some minimal values, then increase again, respectively. As
shown in the figure, the influence of the verge angle on the reconstruction error is different in three
directions. The influence of distance Z on the shape of the curve is not significant. The graph obtained
when Z = 1000 mm (not shown) is almost same to the one obtained when Z = 100 mm except the

12
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Figure 6. The verge angle affects the optimal baseline and the reconstruction error in the single error model.
Z = 100mm for the top two graphs column and Z = 1000mm for the bottom two. In both cases, a small optimal
baseline and a low error level can be obtained.

Figure 7. The verge angle affects the optimal baseline and the reconstruction error in the two camera error model.
σx
σy

= 0.2 for the left column; σxσy = 1 for the right column.

scale is different. The ratio σx
σy

does affect the shape of the curves, however, the basic curve trend is
similar.

7 Conclusion
This work started off to define a more realistic stereo error model for use in stereo measurement and
Kalman-filtering of motion-stereo data, and to optimize parameters with respect to world coordinate
measurements rather than simply depth measurements. Due to that, we defined a more general error
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model, using the realistic assumptions from noisy ray intersection computations as they are used in
stereo. The resulting models, and process for generating new ones, are directly useful for system design
and for data fusion.

For stereo systems, especially verged systems, we show that the baseline that optimizes the localiza-
tion error is finite. It is a complex function of distance to target, expected error and viewing angles, but
is in general finite and for verged systems, it is reasonably small. For parallel cameras the baseline is
still finite, though larger. The results also provide a new model for errors and optimal viewing angles for
measuring height of “obstacles” in robotic navigation and objects in remote sensing.
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