Secure remote matching with privacy:
Scrambled Support Vector Vaulted Verification (S*V?)

Michael J. Wilber and Terrance E. Boult
Vision and Security Technology Lab, UCCS
Colorado Springs, CO, 80918, USA

{mwilber, tboult}@vast.uccs.edu

Abstract

As biometric authentication systems become common in
everyday use, researchers are beginning to address privacy
issues in biometric recognition. With the growing use of
mobile devices, it is important to develop approaches that
support remote mobile verification. This paper outlines the
need for a mobile/remote SVM-based authentication system
that does not compromise the privacy of the subject be-
ing recognized. We discuss limitations of earlier privacy-
preserving authentication systems and present necessary
privacy and security requirements that make a system at-
tractive from both the server’s security point of view and
from the client’s privacy-centric point of view. We then
present a novel protocol we call “Vaulted Verification” that
allows a server to remotely authenticate a client’s biometric
in a privacy preserving way. We conclude with a small eval-
uation of performance, discussion of security implications,
and ideas for future work.

1 Introduction

The underlying question addressed in this paper is “Can we
have a secure, privacy-preserving means of remote vision-
based verification using support vector machines?”” The an-
swer, of course, is yes. This paper presents a novel approach
to privacy-enhanced verification. We aim to solve the im-
portant problem of improving recognition rates by allowing
SVM-based models while at the same time allowing remote
verification to improve privacy and provide secure verifica-
tion of the match. While the core algorithm can be applied
to other recognition problems, this paper will focus on face-
based biometric verification. This paper lies at the intersec-
tion of four areas of vision-related research: support vec-
tor machines for recognition, remote and mobile authenti-
cation, face recognition, and privacy enhanced recognition.

The problem that motivates our research is the ability to
perform remote verification. Suppose a client, say Chris
(C), wishes to use a mobile phone or laptop to remotely au-
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thenticate to a central server, say a bank (5). Both parties
require the system to be secure and Chris wishes to main-
tain his privacy. With classical solutions, Chris enrolls and
the bank maintains a central database with his biometric
template and biographic data. When Chris wants to access
his bank account, he provides his biometric and biographic
data for verification, and the bank separately matches these
items. This may seem secure for the bank, but Chris has
privacy and security concerns about the server storing his
enrollment record, receiving his raw biometric data, and be-
ing able to match on his raw data whenever desired. How
can Chris ensure the data sent for verification is not being
phished? How can Chris ensure no one uses his recognition
data without his consent?

One solution to this privacy/security conundrum is to use
privacy-enhanced template protection(PETP). Earlier tech-
niques such as cancelable biometrics [21] and fuzzy vaults
[12] have been explored but have significant security prob-
lems [23, 18]. Some PETP techniques such as revocable
biotokens [4] and fuzzy commitment schemes [13] are still
secure but are not suitable for remote matching.’

Other approaches from the domain of data mining in-
volve multiplying feature vectors by a random orthogonal
matrix to “rotationally perturb” each vector [6]. Unfortu-
nately, attacks based on Independent Component Analysis
can compromise those methods’ security [10, 17]. A simi-
lar method that discards information is called “random pro-
jection,” [3, 17] originally intended for dimensionality re-
duction but recently applied to privacy-preserving biomet-
ric systems [24, 14, 9, 2, 11]. These random-projection ori-
ented approaches provide some protection but they have se-
curity limitations and weak performance.

Because the client values privacy, ideally the server
should never have access to biometrically identifiable data;

'While [4] presents high accuracy claims, it has since been shown there
were problems in their experimental protocol, such that testing data was
inappropriately leaked into their “robust windows” sizing. When prop-
erly separated, the performance of robust revocable face biotokens are only
slightly better than classic PCA.
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not at enrollment, not at matching, and definitely not stored
on the server. However, new problems arise if the server no
longer controls the matching. With a traditional biometric
system or with traditional privacy-enhanced technologies,
there is no way for the server to verify the remote match.
Thus, an important goal of this paper is to develop a method
that supports secure remote matching.

In the field of non-privacy-preserving face recognition,
using multi-view galleries for training is now a widely-
accepted technique to improve performance. Many state of
the art systems use SVM classifiers, e.g. [20, 15]. This
raises an interesting question: How can we combine mul-
tiple views and use general SVM classifiers in a privacy-
preserving setting?

To meet these goals, we show how to build a privacy-
preserving SVM-based verification system. With our sys-
tem, a server can use an SVM classifier to verify a client’s
authenticity by stepping through a challenge-response pro-
tocol. This is done in such a way that the server cannot
learn anything about the client from the trained SVM tem-
plate. Furthermore, classification can only commence with
the client’s cooperation, making “automatic” classification
impossible. These two properties help preserve the client’s
privacy. To show our method’s feasibility, we implement a
remote face authentication system.

2 Privacy and security requirements

What does it mean for a classification method to be “pri-
vate”? For our purposes, we define a “private” verifica-
tion system as one that is resistant to the following attacks
[23,7, 8]:

e Man-in-the-middle or replay attacks: During authenti-
cation, eavesdroppers/attackers must not be able to cap-
ture any useful information, nor should they obtain infor-
mation that describes the subject’s biometric.

e Record multiplicity attacks: Templates of the same
subject across multiple databases must not be linkable.

o Compromised template attacks: If an attacker acquires
the template on the server, they must not be able to learn
anything unique about the subject’s biometric, and they
must not be able to authenticate as the subject.

e Automated identification attacks: Classification must
only be possible with the subject’s consent. Verification
without the subject’s knowledge (e.g. in an automatic
terrorist-identification system) must be impossible.

e Blended substitution attacks: A malicious insider (with
all server keys) must not be able to silently replace the
subject’s template with one that matches the subject and
the attacker. Doing so would allow the attacker to “back-
door” the authentication system. [23]
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o Non-revocability concerns: The classifier template
should be “revocable”; the subject should be able to
destroy the template simply by destroying a passphrase
used in the authentication process.

Finally, all these requirements should be achievable
without a large drop in verification accuracy.

Our SVM-based verification system is novel because it
protects against the six attacks outlined above while still
providing useful accuracy for many verification problems.
To our knowledge, no other SVM-based system exists that
satisfies these requirements.

3 Previous work in private SVMs

There is little research exploring privacy-preserving SVM
classification. Certain methods exist, but they only focus on
protecting the training set, not the final classifier.

Two methods exist for allowing multiple clients with dif-
ferent shards of the training set to construct an SVM clas-
sifier without revealing their portion of the set to the other
participants [25, 26]. Neither method addresses protecting
the SVM itself after training; the final classifier is assumed
to be securely stored by a trusted third party.

Another method describes a way of post-processing a
trained SVM to protect privacy of the support vectors [16],
but this approach only works on Gaussian kernels because it
discards terms of the Gaussian function. In a sense, the final
SVM produced by this method trades privacy for accuracy.
The final SVM may still leak information about what types
of vectors it classifies.

All three methods focused on problems such as medical
classifiers where the goal was to release the final classifier
while still protecting the privacy of individual patients’ sup-
port vectors. The final SVM was left slightly altered [16] or
unprotected [25, 26]. If an attacker acquired a copy of the
SVM classifier, they could acquire the support vectors that
store the subject’s identification and could feasibly recon-
struct the subject’s biometric. Thus, these schemes are un-
suitable for our problem. Ideally, we wish to build an SVM
matching system that can classify samples without reveal-
ing anything about the samples it classifies.

4 Remote Authentication Issues

For security, the server will not just trust a remote client re-
sponding yes/no on a match. To resist automatic authentica-
tion attacks, the server cannot store enough information to
authenticate the client without the client’s knowledge. The
ideal solution is to have the client and server step through a
challenge-response protocol for each authentication.

We wish to build a protocol that satisfies the privacy
requirements outlined in Section 2. To do this, several
key questions must be carefully considered. Which party
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matches the template against the probe? How is the tem-
plate stored? In a traditional protocol, if the server matches
the client’s biometric against a stored template, it is the
server’s responsibility to keep the template and the match-
ing data secret. Further, if an eavesdropper captures the bio-
metric or the stored template, they can compromise the pri-
vacy of the subject. On the other hand, if the client matches
the biometric against the template, the server must trust the
client’s response because the match score alone has no in-
herent security value. In such a protocol, the server has no
way of double-checking the client’s match claim.

This creates a conflict. For security, the server must
match the biometric because it cannot trust the client. For
privacy, the client must match the biometric because if the
server gets the raw data, it could compromise the client’s
privacy.

5 SVM Vaulted Verification Protocol

To satisfy the privacy requirements outlined in Section 2,
we present a full authentication protocol that allows a server
to use SVM classifiers to authenticate a client in a privacy-
preserving way. This is presented for secure face verifica-
tion but should be useful for other modalities/domains.

Our SVM vaulted verification scheme preserves privacy
by having the client perform the SVM classification. This
way, each classifier can be encrypted by the client’s key;
hidden from the server. To avoid placing trust on the client’s
authentication decisions, the server uses the classifiers to
build the challenge, and the client must prove to the server
that it actually has the feature vector being classified. Thus,
only the client can decode or use the SVM classifiers, and
only the client can test the feature vector. The server’s role
is to generate a token that the client can only derive from
the proper SVM classifiers and the proper feature vector.

One way of generating such a token is to force the client
to distinguish between “real” and “chaff” SVM classifiers,
storing both kinds in the template. Each bit of the server’s
challenge-response token could contain one real and one
chaff classifier. The client uses each classifier to classify the
corresponding part of the feature vector and decides which
classifier is real and which is chaff. The client’s decision
then becomes that bit of the response. This is the core of
how vaulted verification works: storing multiple real and
chaff SVM classifiers in the template and forcing the client
to decide between the two at authentication time.

Because an attacker does not know the difference be-
tween the real and chaff SVMs, it cannot construct the re-
sponse with better than random chance. Further, because
each classifier is encrypted with a key that only the client
knows, each template conceals the client’s privacy from the
server. This way, no identifiable information is stored on the
client, and the data stored on the server cannot be decoded
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without the client’s encryption key which never leaves the
client’s device.

Our protocol makes two important assumptions. First,
we assume that a classifier can be chosen such that an hon-
est subject can distinguish between the real and the chaff but
an impostor cannot. Second, we assume that each feature
vector can be split into meaningful parts such that each part
is individually distinguishable from its corresponding chaff
part. Both assumptions impose restrictions which could de-
grade performance. Other than that, this approach makes
no real assumptions about features or classifiers — like fuzzy
vaults, our approach is a very general concept.

The rest of this paper is devoted to a detailed description
of the privacy-preserving SVM vaulted verification proto-
col at enrollment and match time. We then describe some
security considerations and outline its implementation in a
face authentication system, concluding with an evaluation
of the performance and security of our system. Throughout
the description of our protocol, we assume that all commu-
nication between the client and the server takes place under
a trusted channel such as SSL with hard coded certificates.

5.1 Enrollment time

At enrollment, the client generates a feature vector, F'V,
that represents the user. This feature vector is then permuted
(shuffled) according to a “permutation key,” K, derived
from the client’s passphrase and/or secret key stored on the
device to yield PF'V. This permuted feature vector is then
split into N smaller vectors, si, S, ..., sy. Each “slice”
of s has % as many elements as PF'V. Using s, N one-
class SVM classifiers, vq, va, ..., Uy, are trained. Because
SVM classifiers generally require more than one sample in
the training set, the same process can be repeated on mul-
tiple feature vectors of the subject, all permuted with K,
to yield several s; suitable for training classifier v;. This
allows a multi-view gallery to be used.

In addition to v, the client uses the same process to
generate different but statistically indistinguishable “chaff”
SVM classifiers wy, wa, ..., wy trained on corresponding
“chaff” feature vectors. Ideally, these chaff feature vectors
should be chosen such that the subject can tell which clas-
sifiers are elements of v and which classifiers are elements
of w, but attackers will find them indistinguishable.

At this point, the client has N classifiers (v) trained on
parts of real feature vectors from the client and N corre-
sponding chaff classifiers (w) trained on the corresponding
parts of chaff feature vectors.

The client then generates a polynomial, f, with C' < N
random coefficients and a corresponding chaff polynomial g
with C' random coefficients. Even though f is never stored,
it plays an integral part of the match process, used as both
an authentication token and a means for error correction.

For each element v; of v, the client creates the triple
(vi, a, f(a)) for some random number a. In a sense, this
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triple binds the serialized representation of classifier v; to a
random point on the polynomial. The client then creates the
corresponding triple (w;, b, g(b)), which binds the chaff
classifier w; to a point on the completely different, mean-
ingless polynomial g. Each triple is then encrypted with an
encryption function E with key K. Only the client knows
K so only the client can recover the elements of each triple.

At this point, the template contains hash(f) and N pairs
of encrypted blocks:

hash(f)
Ei(v1, ay, f(a1))
Ey(v2, ag, f(a2))

Ey(wy, bi,g(b1))
Ey(wa, b2, g(b2))

| Ex(vy, an, flan)) \ Ex(wy, by, g(bn)) |

The client takes one last step before storing the template.
If the template were stored as shown above, the server and
attackers could know that v; would always be the first ele-
ment of each pair. To avoid this, the client defines a “canon-
ical swapping,” C'S = {0, 1}N, derived from the coeffi-
cients of f. For each bit in C'S (call it C'S;), if C'S; = 1
then the ™ pair is swapped in the template — the real be-
comes the second element and the chaff becomes the first.
This way, the real and chaff are stored unpredictably.

Finally, the client encrypts the template with the server’s
public key, storing the final template on the client’s device.
This prevents an attacker from using the template if they
steal it from the client and makes the server a less interesting
target (see our security discussion in Section 5.3). To ensure
that the client presents the correct template, the server stores
only a hash of the encrypted final template.

After enrollment, what kind of information does each
party have? From the client’s perspective, this template con-
tains a large block of data encrypted with the server’s key.
In order to authenticate, the client must send the template
to the server who decrypts it before starting the rest of the
protocol, discussed below. Because the client never has the
“raw template” until after a successful authentication, an
attacker cannot gain any useful information by stealing the
template from the client.

From the server’s perspective, once the client sends the
template, the server can see that the template contains
hash(f) along with N pairs of encrypted triples; half of
which encapsulate v and half of which encapsulate w. Be-
cause the server does not have K., it can never recover or
alter the triples and thus it cannot obtain v. Further, as-
suming hash(f) is one-way, the server cannot obtain the
coefficients of f. These properties preserve the privacy of
the client from the server and from any attackers that gain
access to the classifier template.
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5.2 Match time
5.2.1 Opverall principle

During match time, the client first sends the encrypted tem-
plate to the server. The server then generates an authenti-
cation token. In order to ensure that only the subject can
recover this token, the server encodes this token as a unique
transformation of the template and sends the transformed
template back to the client, challenging the client to detect
the transformation and extract the authentication token.

How can this transformation occur? Recall that the en-
roller encrypted each SVM with the client’s key. The server
clearly cannot change the content of the template, but it can
change the template’s structure by swapping the pairs of
triples stored inside. This way, the server can consider each
pair of triples as a single bit of a binary string of length N.
The server can then encode this binary string by sending
the template back with some pairs swapped. For each bit,
if the server sends (E;(vi,as, f(a;)), Ei(w;,bi, g(b;))),
a binary 0 is assumed. If the server instead sends
(Ei(wi,bi7g(bi)), Ei(vi,ai, f(al))), a binary 1 is as-
sumed. Because the client can distinguish between v and
w, the client knows which triple came first; thus, the true
client can extract each bit of the string sent by the server.
The client can then use this string to prove it actually had
the biometric. Because an attacker cannot distinguish be-
tween v and w, they only have random chance of correctly
guessing each bit.

5.2.2 Detailed protocol: Server’s role

The server uses the steps outlined in Algorithm 1 to authen-
ticate a client. To authenticate a client, the server receives
the encrypted template from the client, compares its hash
with the stored hash to ensure the client presented the cor-
rect one, and decodes it. The server then thinks of a random
bitstring B = {0,1}" and a random nonce. B and nonce
are only valid for this session.

The client’s ultimate goal is to return

hash(hash(f) || nonce || B)

where || denotes concatenation. To do this, the client must
extract the bits in B along with the coefficients of f through
the matching process.

5.2.3 Detailed protocol: Client’s role

At authentication time, the client captures a probe feature
vector, F'V’/, permutes it with K p»> and splits it into /N parts,
p1, P2, ..., pn. Each element of p should be correctly
classified by each corresponding classifier v stored on the
server because at enrollment, v; was trained with samples
similar to p;. The client decrypts m using session key K
and saves the nonce. For each pair in m sent by the server,
the client decrypts both triplets with K .; call these triplets
(t;, ai, f'(a;)) and (u;, b, g'(b;)). Either t; = v; and
u; = w; or u; = v; and t; = w;. The client must decide
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Algorithm 1 The server’s authentication process.

E(t) < Receive encrypted template from client
Ensure Hash(E(t)) matches stored template hash
hashf < hash of f from ¢
pairs <— encrypted pairs of triples from ¢
K, < arandom Session Key
nonce < a random number
B + arandom bitstring of length NV
Initialize message to m = nonce
fori =0— N do

vblock, wblock <+ pairs;

if B, == 0 then

Append (vblock, wblock) to m
else
Append (wblock, vblock) to m

end if
end for
Encrypt m with K and send both to client
expected_response < hash(hashf || nonce || B)
actual_response < Receive from client
if actual_response == expected_response then

Authenticated
else

Authentication_failure
end if

which is which by classifying each p; with both ¢; and ;.
For example, assume the classifier with the better classifica-
tion score is v; and the other one is the chaff classifier. The
client could then retrieve the corresponding bit of B; and
assume that either (a;, f'(a;)) or (b;, g’ (b;)) (depending on
its choice) denotes a point on polynomial f.

f is over-determined because it has only C' coefficients
but the server sends N encoded points on the polynomial.
This provides a sort of backwards error correction. If the
client is unable to extract the required C points on f, it can
perform a weighted search (such as that further described in
Section 5.2.4) to find the correct polynomial.

Using this backwards error correction scheme, the client
can obtain all the coefficients of f along with the bitstring
response B’. Because of the canonical swapping, B’ # B,
but once the client has the coefficients of f, it can derive the
C'S used for enrollment. For each bitof CS, B =CS® B’
The client can then send its response.

5.2.4 Searching the polynomial search space
The client must successfully extract all N bits of the bit-
string to authenticate. To do this, he or she must correctly
identify C' bits and use the polynomial to recover the rest.
This creates a problem: how does the client know which
bits it guessed correctly?

In the detailed description of the protocol given above,
we describe a naive example in which the client decides
each bit based on the assumption that v; always yields a
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higher classification score on p; than w;. This assumption
often does not hold. Thus, the client will have to search
for the polynomial, using a backwards error correction ap-
proach wherein the SVM marginal distance provides a com-
putational advantage over an adversary.

The weighted brute-force search works as follows:
the server sends several pairs of triplets, call them
(t;, a;, f'(a;)) and (u;, b;,g'(b;)). As usual, the prob-
lem is to find the coefficients of f by deciding which of ¢;
and wu; corresponds to v and which corresponds to w. To
do this, the client sorts the pairs by ‘“confidence,” defined
as the difference in classification scores, in descending or-
der. Then, the client can take the C pairs with the highest
confidence and discard the rest. The client can first try to
construct f using the C' most confident points. If this poly-
nomial does not match the rest of the points in one element
of each pair in the template, the client can try all possibil-
ities of matches assuming one flipped bit. If no match is
found, the client can try more possibilities with probabili-
ties being driven by the SVM marginal distances. To verify
any particular guess, the client can simply construct f from
the C pairs and find whether or not one element of the rest
of the pairs lies on f’. If all pairs contain a point on f’, the
client knows that f = f’. This search strategy assumes that
the client correctly guessed all but a small number of the
least “confident” bits. To find the correct polynomial, the
client must step through up to

> ()
i=0 ‘

different possibilities, where W is the number of incor-
rect bits in the original guess. This scheme gives a large ad-
vantage to the honest subject who can correctly guess most
of the bits and search the rest in order of likely errors. With
a good chaff generation scheme (see Section 6.1.2), an at-
tacker should get about half of the bits wrong due to random
chance, and has no advantage in choosing what bits to flip
while searching.

5.3 Security considerations

How does this SVM verification scheme satisfy the privacy
requirements in 2? This model has many layers of security
that work together to provide a private system.

First, the raw template is encrypted against the server
key. The server only stores a hash of the template, mak-
ing it an uninteresting target and deterring attackers. To
decode the template, an attacker needs both the server’s pri-
vate key and access to the template stored on the client’s de-
vice. Each block is individually encrypted with the client’s
private key, further preventing the attacker from recovering
the raw classifiers. Even if an attacker decrypts v and w,
the “canonical swapping” of each pair prevents the attacker
from discerning between the real and the chaff without the
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coefficients of f, which would allow them to authenticate
anyway. These properties prevent the server and attack-
ers from acquiring the client’s biometric data, preventing
a compromised template attack.

Because the server cannot easily modify or decode the
template in encrypted form, blended substitution and au-
tomated verification attacks are computationally infeasible.
Also, because K, and hash(f) are assumed to be unique to
each enrollment, record multiplicity attacks are impossible
and the client can revoke their biometric template by simply
forgetting K..

During the authentication process, the only unique infor-
mation exchanged between sessions is the server’s nonce,
the ordering of the encrypted template pairs, the hash of f’s
coefficients, and the hashed client response. None of these
leak information about which pairs are which, so man-in-
the-middle or eavesdropping attacks are fruitless, even as-
suming an attacker could subvert the SSL. communication
between client and server. To guess B with no a-priori
knowledge and without K, the attacker would have one
chance per authentication challenge to correctly guess all
N bits along with all coefficients of f and would have no
way of verifying their answer. Even if the attacker knew
K., he would have to possess a biometric which eventually
matched against v for at least C bits. If he obtains a similar
biometric that correctly yields less than C' bits, his search
space would be greatly reduced depending on the degree
of the biometric’s similarity. If the attacker additionally
wishes to compromise the client’s privacy by obtaining a
picture of the client’s face, he would also have to obtain the
permutation key K, and then somehow derive a picture of
the face from the reassembled feature vector. It is unknown
if the SVM data could support image recovery.

6 Implementation in an SVM-Based

Face Verification System

To test the merit of our SVM classification scheme, we im-
plemented an SVM-based face verification system. The
honest subject enrolls with face images and can then au-
thenticate by presenting his/her face.

6.1 Implementation Details
6.1.1 GRAB Feature Vectorization

For every classification, we must convert images into fea-
ture vectors. We chose the GRAB descriptor as it has been
shown to yield good accuracy on multi-class recognition
problems in the FERET and LFW datasets [22]. GRAB
feature vectorization works by transforming the image into
a “processed” version of the image by using a method simi-
lar to linear binary patterns [22, 1]. The final feature vector
is the concatenation of the histograms of each subwindow in
the processed image. The goal here is not to show this is the
optimal face-verification approach, but rather to validate the
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Figure 1. Histogram of how many bits impostors could identify
(shown in red) versus how many bits the subject could verify
(shown in green). Ideally, attackers guess about half of the bits
(random chance) and the subject correctly guesses most of them.

vaulted verification design and understand the impact of the
vaulted-verification challenge-response model on the origi-
nal SVM’s accuracy.

During matching and enrollment, the feature vectors are
permuted according to K, and split into N parts for SVM
training. In this scheme, permuting the feature vector has
the effect of “spreading” the important discriminatory infor-
mation about areas near the eyes, mouth, etc. across mul-
tiple SVM classifiers inside the template, thus improving
overall accuracy. For these experiments, we use one-class
RBF SVMs as implemented by libsvm [5].

6.1.2 Chaff generation

A good chaff generation scheme is an important part of our
protocol. If w is “too close” to v, the subject may have a
hard time discerning them. On the other hand, if w is “too
far” from v, an attacker might be able to gain access since
many faces might be closer to v than w.

In our face verification system, we trained w on random
parts of feature vectors of other people. This required a
change to the experimental protocol: At the beginning of
our test, we took 64 subjects from the dataset and removed
them from the rest of the experiment. Each image from
these subjects was processed using the same permutation
K, and used to train 64 x N SVM classifiers to yield several
“canonical negative examples” Fj ... Eg4. Each element of
w was the corresponding slice of one example from F, cho-
sen randomly. Practically, using a limited set of “negative
examples” makes the chaff easier for an attacker to guess if
they gain access to the pool of examples used, so a much
larger pool should be used in practice.

To evaluate these ways of generating chaff, we ran exper-
iments using the evaluation protocol in Section 6.2.1. No
searching was done and no polynomial was used to correct
incorrect bits. The purpose of this evaluation was to identify
the distribution of scores for this chaff generation scheme.
Figure 1 describes the subject’s advantage over the attack-
ers in discerning each real SVM from the chaff in terms
of the distribution of how many bits the subject correctly
guessed versus how many bits the attacker correctly found.
Note this presumes ground-truth knowledge but highlights
the advantage for the true subject.
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6.2 Evaluation
6.2.1 Experimental Protocol

Because our experiments depend on machine learning clas-
sifiers that require three or four images to train each sub-
ject, we could not use the standard FERET protocol because
each subject may have only a single gallery sample. Instead,
we chose the FERET240 set, a subset of FERET [19] that
contains the subjects that have at least four images [22].
While FERET240 has been used for identification testing,
we adapt it for verification testing in the following manner.
We choose 64 subjects to be the “chaff generators”. Three
pictures of a subject were chosen for their gallery and their
remaining images were positive-labeled probes. All images
for the other 175 subjects were impostor images.

To establish a baseline, we ran the experiment as de-
scribed above with a single SVM classifier classifying a
GRAB feature vector. The original GRAB algorithm com-
bined the 64 regions’ features, but here we classify each
separately. To improve privacy we not only use the 64 re-
gions of the original grab, but we also include a random per-
mutation of the features before training the 64 classifiers.

6.2.2 Results

For the first baseline — a single one-class classifier trained
on raw GRAB feature vectors — we achieved 57.2% TAR
at 0.0107% FAR. The split-region version with N = 64
classifiers trained on parts of the feature vector, is our pri-
mary baseline. SVMs don’t lend themselves well to vary-
ing security/convenience type analysis, but with a multiple
classifier model we can easily vary the number of match-
ing bits. At 56 bits matching, the baseline performance was
.08%FAR and 69.5%TAR. For higher convenience settings,
the baseline at 48 bits provided a FAR of 6.89% at a TAR
of 90.15%. Note the split region baseline is considerably
weaker than the baseline set by a “vanilla” face verification
system, so there is an inherent loss in simply combining
counting “bits” compared to the power of an SVM combin-
ing the regions.

Note that using only 3 images for training is minimal for
a 1-class SVM approach. As a personal verification system,
we expect many many more images, which would signifi-
cantly improve TAR performance at a fixed FAR. However,
our goal here is understanding the valuated verification per-
formance impact and using existing datasets will improve
scientific reproducibility. Future work will test with more
appropriate datasets, including liveness detection.

The rest of our tests used the protocol described in
Section 6.2.1 with the “random negative example” chaff
scheme and the polynomial search described above, end-
ing the backward error correction search after 1024 steps.
We tested vaulted verification with various numbers of re-
quired matched bits (C'), and varied the number of error cor-
rection steps as a means of varying the FAR. To measure
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Figure 2. Privacy/security impact graph, showing % improvement

in TAR over split baseline on Y-axis given a certain FAR. Similar
to an ROC, threshold was the number of polynomial search steps
required to find f. N=64, C=35

our performance relative to the split baseline, we create a
“Privacy/security impact graph” which shows the percent
improvement/loss over the baseline TAR with respect to a
given FAR, as shown in 2. This graph shows the relative
gains and losses that our privacy protection has at various
FAR, plotting 100 * Y=2 where V if the TAR of Vaulted
Verification at the given FAR, and B is the TAR of the base-
line algorithm at that FAR. We can see that at larger FAR
rates, vaulted verification shows slightly decreased perfor-
mance, and at lower FAR (higher security), vaulted verifi-
cation actually improved performance.

Our most secure vaulted verification test required 55 bits
to match to find f. While this test significantly improved
performance over the split baseline, the TAR is likely too
low to be feasible, though with more training images it
may become viable. Our least secure vaulted verification
test only required 35 bits, but under-performed the base-
line achieving an FAR of 4.20% at a TAR of 77.5%. This
fell well below the split baseline, underscoring the impor-
tance of choosing sensible parameters when implementing
Vaulted Verification.

6.2.3 Security considerations

Keep in mind that these impostor trials only tested the bio-
metric’s ability to resist a stolen template attack. We es-
sentially presume the attacker has both the server and the
client’s encryption keys/passwords, testing only the biomet-
ric performance of our algorithm separately from its secu-
rity. For these tests, we assumed the attacker somehow ac-
quired K., and K, which requires physical access to the
client’s device and the client’s passphrase. If the attacker
could get this far, they could likely find an image of the
client’s face, thus compromising the biometric. If the at-
tacker did not know K, and K, there would be no false
accepts because guessing f and B is statistically infeasible;
see Section 5.3.
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7  Conclusion and Future Work

This paper discussed the need to create privacy-preserving
remote SVM verification systems. To achieve this, we
devised new biometric-based challenge-response protocol
that allows the client to perform the matching while prov-
ing its authenticity to the server. We implemented our
SVM Vaulted Verification protocol in an SVM-based face
recognition system. We presented preliminary results that
demonstrate this protocol’s feasibility for face verification
and we outlined several possible ideas for improvement.

In the real world, more than 64 bits of security are de-
sired. Thus, one objective of future experiments will be to
evaluate our privacy-preserving SVM verification protocol
at higher NV and multiple C'.

Future work will also involve improving accuracy and
applying this research beyond face matching, extending it to
other domains such as voice, keystroke, and iris verification.
It will also address the very important aspect of liveness
detection, ensuring the system cannot verify against a static
image.
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