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Abstract

The concept of the Bayesian optimal single threshold
is a well established and widely used classification tech-
nique. In this paper, we prove that when spatial cohe-
sion is assumed for targets, a better classification result
than the “optimal” single threshold classification can be
achieved. Under the assumption of spatial cohesion and
certain prior knowledge about the target and background,
the method can be further simplified as dual threshold clas-
sification. In core-dual threshold classification, spatial co-
hesion within the target core allows “continuation” link-
ing values to fall between the two thresholds to the target
core; classical Bayesian classification is employed beyond
the dual thresholds. The core-dual threshold algorithm can
be built into a Markov Random Field model (MRF). From
this MRF model, the dual thresholds can be obtained and
optimal classification can be achieved. In some practical
applications, a simple method called symmetric subtrac-
tion may be employed to determine effective dual thresholds
in real time. Given dual thresholds, the Quasi-Connected
Component algorithm is shown to be a deterministic imple-
mentation of the MRF core-dual threshold model combining
the dual thresholds, extended neighborhoods and efficient
connected component computation.

1. Introduction

The segmentation or detection of a “target” of interest
within an image is a common problem spanning the ar-
eas of video surveillance, medical imaging, machine vision,
document processing, microscopy, and many other applica-
tions. There have been hundreds of papers in the area of
thresholding, e.g. see the reviews in [15, 7]. While the
papers vary in how to compute the threshold, all these pa-
pers have one thing in common – they all define a single
threshold. A single threshold provides a fast and conve-
nient segmentation and is generally easy to analyze. There

have been multiple “optimal” algorithms differing in their
assumptions and criterion. The most commonly used of
these is the optimal Bayesian formulation, which will be
formally discussed in the next section. Other criterion
have been used for “optimal” thresholds based on his-
togram shape, clustering-based techniques, entropy-based
techniques, attributes-based techniques, and locally adap-
tive thresholding.

The most relevant past work to this paper are those
that mixed spatial information into the process of deter-
mining the threshold. One of the earliest of these was
[10], which used local window averages. Others have used
windows of local variances and second order statistics[1],
edge features[17], quad-trees[18] and hysteresis threshold
selection[14]. If we had enough information, the ideal
would be to apply the Bayesian thresholding to full joint
spatial/intensity distribution models. This joint distribu-
tion can be used to define a per-pixel probability, that
mixes space and intensity data, and one could apply a sin-
gle threshold on that probability to segment the data. But
knowledge of a full joint distribution is an unrealistic as-
sumption. Weaker models have been developed as approx-
imation, e.g. using co-occurrence [12]. These approximate
techniques are still quite expensive (generally quadratic)
and in experimental evaluations, e.g. [15], have been found
to be significantly less effective.

However, not all thresholding papers use a single thresh-
old. An early dual-thresholding approach was described
in [9], wherein models of background using “known back-
ground pixels” are used to define an upper and lower thresh-
old for the backgrounds distributions such that targets with
values near the average background value can still be seg-
mented. This approach, and many since then, use multiple
thresholds to address multi-modal backgrounds, wherein
the target is within the area. This is well known and, of
course, useful. But with a bit of training data this is really
just separating the problem of threshold selection to above
and below the target region and can be applied to extend the
approach presented herein, moving from a core-dual thresh-
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Figure 1. Comparison of single and core-dual thresholds. The
solid broad curve is the probability distribution of target values and
the solid taller curve is the probability distribution of background
values. The dashed curve is the observed total distribution for 1/4
of all pixels being on target. The dotted black line, marked B, is
the Bayes optimal single threshold. The orange(very light grey)
dot-dashed line, marked V, is the optimal “valley” single thresh-
old. The green (medium gray) solid lines, marked 1 and 2, are
examples for a core-dual threshold. The gray rectangular insert is
an hypothetical scan-line showing the target in red (dark grey) and
background in blue (almost black) as well as the 4 thresholds.

old approach to a core-quad threshold approach.
The idea of dual thresholds, with hysteresis, goes back

to the Canny edge detector [5]. That work, however, was
just for edge detection, using the edge strength thresholds
along the prescribed curve boundary, and provided no for-
mal method for defining the thresholds. Latter Hancock and
Kittler [8] derived, under the assumption of Gaussian noise,
a formal approach for estimating the thresholds in a Canny
edge detector. Besides the strong model assumption, their
work is strongly tied to the Canny edge detector. While a
similar issue, the overall approach does not apply to thresh-
old selection for 2D region detection.

A different approach to dual thresholding for region-
based detection is presented in [4], and is introduced as a
way of balancing spatial information with standard thresh-
olding in a real-time system. The basic idea of the dual
threshold can be explained in Figure 1. In the figure, all tar-
get pixels above threshold 1, which are connected to some
pixel above threshold 2, would be labeled target. This cor-
rectly labels all of the background, and almost all of the tar-
get with only very small parts of the target missing. Given
the probability of targets and background values, Bayes op-

Figure 2. Application behind the dual-threshold selection problem,
detection of small targets in the omni-directional image followed
by detection and tracking in the PTZ.

timal chooses a single threshold where the two probabilities
are equal and, in the example, produces significant missed
pixels in the target as well as false alarms in the background.
The valley algorithm produces fewer false alarms but also
fails to detect most of the target. The intuition of this ap-
proach, exploiting the spatial cohesion of targets, allows a
much lower second threshold that fills in much of the tar-
get region. But the requirement of connecting to the higher
threshold stops spurious background regions from forming.
However, [4] developed/presented the technique in an ad
hoc manner and argued heuristically that it is better. They
never provided any formal analysis and determined thresh-
olds heuristically from ROC curves of system performance.
That approach may apply for a static camera, doing back-
ground subtraction, in a static scene. But region detection
and dual-thresholding can be applied in a wider range of
video surveillance and vision problems, not just background
subtraction. E.g. if looking for “hot” targets in thermal
video, they can be applied directly to the intensity imagery.
With statistical models or texture models, one can produce a
per-pixel target filter response image (ideally a likelihood),
and then apply the dual-thresholding approach to the filter
response.

Our underlying problem is detection and tracking of
small vessels from a moving ship, with an omni-directional
camera as the initial detection platform and a PTZ as an as-
sessment image. The overall flow, which is not covered in
this paper, is show in figure 2.

Rather than focusing on the application, the focus of
this paper is to take the dual-thresholding with spatial cohe-
sion idea, formalize it and develop techniques for estimat-
ing thresholds from the images themselves. In particular we



formally prove, that for spatially cohesive targets, it is more
effective than single Bayesian threshold. The proof tech-
nique can be applied for just about any definition of a single
“optimal” threshold. We then develop approaches for deter-
mining the thresholds. If the background/foreground mod-
els are known, or can be estimated, then setting the thresh-
olds is formulaic. We present an MRF approach when one
can determine thresholds a priori, and a symmetric subtrac-
tion based technique that can be applied per image when
a little a priori data can be used. Either technique may be
used to determine thresholds every few hundred frames, and
hence adapt the thresholds over time.

2. Problem Formation

2.1. Bayesian Optimal Classification

We first consider the two class pattern classification
problem. Let ω be the category state, ω = ω1 be the tar-
get, ω = ω2 be the background. Let x ∈ [0, Tmax] be a
continuous feature variable. Using Bayesian theorem, we
can compute the posterior probability from the prior proba-
bility P (ω) and the likelihood density p(x|ω) as:

P (ω|x) =
p(x|ω)P (ω)∑
ω p(x|ω)P (ω)

(1)

Let the overall risk for taking x as a decision thresh-
old be α(x). The Bayesian optimal threshold is xopt =
arg minx α(x).

If we have more knowledge on the problem, better re-
sults may be achieved. Without loss of generality, we as-
sume that there is only one xopt and the mean of feature
values for the target are smaller than that of the background.
The following discussion can be easily generalized to cases
where multiple xopt exist and where the mean of feature
values of the background are smaller.

When zero-one loss function is employed as the risk
function, the Bayes risk [6] is

α(xopt) =
∫ xopt

0

P (ω2|x)dx +
∫ Tmax

xopt

P (ω1|x)dx (2)

2.2. Optimal Classification with Spatial Knowledge

Besides the feature value likelihood distribution, if we
further know the spatial likelihood distribution of the tar-
get and the background, the joint likelihood probability
P (ω|i, x) is known, where i is the position index, then bet-

ter results α2 can be achieved in terms of risk:

α2 =
∫ xopt

0

∑
i

min(P (ω2|i, x), P (ω1|i, x))dx

+
∫ Tmax

xopt

∑
i

min(P (ω2|i, x), P (ω1|i, x))dx

≤
∫ xopt

0

∑
i

P (ω2|i, x)dx +
∫ Tmax

xopt

∑
i

P (ω1|i, x)dx

= α(xopt) (3)

In the computation of risk α(xopt), for a given x, the deci-
sions are the same regardless of the location of x; with the
introduction of spatial likelihood probability, the decision is
made at each position i and results in better classification.

It may happen that for some fixed T1, P (ω1|i, x) >
P (ω2|i, x) holds for most x < T1 regardless of i. In this
case, a classical decision can be made for x < T1 without
considering the position to get a better result. This generally
reflects our knowledge of the target. For example, we may
know that if x < T1, the points belong to the target. We
may have similar knowledge on the background. For some
T2, if x > T2, the points belong to the background.

If such knowledge about T1 and T2 is available, we can
keep the classical decision rule for x < T1 and T2 and only
consider spatial information for x ∈ [T1, T2]. The risk α3

by doing so is

α3 =
∫ T1

0

P (ω2|x)dx +
∫ Tmax

T2

P (ω1|x)dx

+
∫ T2

T1

∑
i

min(P (ω2|i, x), P (ω1|i, x))dx (4)

Obviously, α2 < α3 < α(xopt). The decision process is
simplified and a good result is achieved. However, the de-
termination of dual thresholds is an ill-posed problem. We
will show how to determine the core-dual thresholds.

3. An Example
We consider the following case as an example. The

prior probabilities for target and background are the same
P (ω1) = P (ω2) = 0.5. The likelihood probability dis-
tributions for target P (x|ω1) and background P (x|ω2) are
N ∼ (µ1, σ

2
1) and N ∼ (µ2, σ

2
2) respectively. We also

assume the spatial likelihood distribution P (ω1|i) of the
target is known, as shown in equation (5). This implies
the spatial likelihood distribution of background P (ω2|i) =
1−P (ω1|i) since only two classes are involved. The feature
variable is x and the position index is i.

P (ω1|i) =
1

1 + ||pos(i)−µp||2
(9σp)2

(5)



where µp is the center of the target, σp is the radius of the
target, pos(i) is the coordinate at position i.

With the spatial information, the decision rule is to clas-
sify the pixel as ω1 if P (ω1|x, i) > P (ω2|x, i), otherwise
ω2 at each position. The discriminant function is:

G(x, i) = P (ω1|i, x)− P (ω2|i, x) (6)
∝ P (x|ω2)− P (ω1|i)(P (x|ω1) + P (x|ω2))

If P (ω1|i) = 0.5, positions provide no information and the
discriminant function is reduced to the classical function.
Otherwise, this discriminant function is position dependent.
For the test image shown in Figure 3, we set µ1 = 90, µ2 =
150, σ1 = σ2 = 30, µp = (250, 250), σp = 40. The
optimal single Bayesian threshold is xopt = µ1+µ2

2 = 120.

3.1. Ratio Map

Since the likelihood probabilities and the spatial likeli-
hood probability are known, a classification decision can
be made at every point i. This is the optimal classification
given the spatial likelihood distribution. From the optimal
classification, we can define the ratio map Tmap.

Tmap(x) =
∑

i H(G(x, i))∑
i δ(xi − x)

(7)

where xi is the feature value at i, δ(·) is Delta function and
H(·) is Heaviside function,

H(x) =
{

1 x > 0
0 x ≤ 0 (8)

Ratio map Tmap(x) is the ratio of the number of positions
whose feature values are x that are classified as targets to
the total number of positions whose feature values are x.
Figure 3 shows the ratio map for the optimal classification
of the test image.

The ratio map clearly shows two points. For the left
point, all pixels whose feature value is less than that point
will be exclusively classified as target points; for the right
point, all pixels whose feature value is greater than that
point will be exclusively classified as background points.
The selection of these two points is not unique. These two
points reflect our knowledge about the likelihood probabil-
ity of feature variables for the target and the background
when feature values are beyond these two points. The ratio
map provides a way to determine core-dual thresholds.

3.2. Optimal Core-Dual Thresholds

Some restrictions may be applied so that the selection of
core-dual thresholds given a ratio map can be unique. We
can define T1 and T2 as:

T1 = arg max
t

Tmap(t) > ζ1 for x ≤ t (9)

Figure 3. Left is a simple noisy test image. Right is the ratio
maps from optimal dual threshold (solid line) and optimal single
threshold classification (dotted line). xopt = 120, T1 = 95 and
T2 = 132. The small dots indicate positions of dual thresholds
when ξ1 = 0.96 and ξ2 = 0.04.

Figure 4. Classification results by single threshold method and
core-dual threshold method. Left is Bayesian Optimal Solution.
The right is core-dual with ζ1 = 0.96, ζ2 = 0.04. The classifi-
cation error rates are 6.7%, 0.76% respectively. Note it NOT do-
ing full spatial filtering using knowledge of expected target size,
adding those techniques (later sections of rapper) produces near
perfect segmentation.

T2 = arg min
t

Tmap(t) < ζ2 for x > t (10)

where ζ1 is a number close to 1 and ζ2 is a number close
to 0. They reflect our confidence in the choice of T1 and
T2. If ζ1 = 0.96, ζ2 = 0.04, we can determine the optimal
core-dual thresholds as T1 = 95, T2 = 132 from the ratio
map.

We showed in section 2.2 that if spatial likelihood dis-
tribution is known, then dual threshold method will achieve
better classification results. This conclusion is confirmed
experimentally, as shown in Figure 4.

Figure 5 shows the ROC curves for the single thresh-
old case, as well as for varying each of the dual thresholds.
The core-dual thresholds are clearly superior in the exam-
ple. The classification errors do not change for a large range
of feature values. This fact tells us the selection of core-dual
thresholds is not unique but also that the results is not terri-
bly sensitive to minor perturbations once in the right region.
One goal of the definition of optimal dual thresholds is to
make the selection unique.



Figure 5. ROC curves for single threshold and for each dual thresh-
old while holding the other constant at its optimal setting for
ζ1 = 0.96, ζ2 = 0.04,.

4. Markov Random Field Model

In previous sections, the spatial likelihood probability for
targets is assumed to be known. In real problems, such
assumption is seldom true. Instead of the assumption of
known spatial likelihood probability, we choose to model
the spatial cohesion in the dual threshold method. Spatial
cohesion is a reasonable assumption in practical problems.
Markov random field (MRF) provides a principled way to
model local spatial distributions.

The core-dual threshold method can be modeled as a
MRF because the classification of a pixel depends on its
neighbor pixels. Let site S represent the image lattice with
size m × n, the label set be L = {ω1 = 1, ω2 = −1},
f = {f1, f2, ..., fm×n} be a family of random variables de-
fined on S and takes a value in L. From the equivalence
of MRF and Gibbs Random Field [2], the distribution takes
the following form.

P (f) = Z−1 × e−U(f) (11)

Z =
∑

f e−U(f) is a normalizing constant, U(f) =∑
C VC(f) is the energy function and VC(f) is the potential

function over clique C. In the maximum a posterior (MAP)
framework, given observation d, the posterior energy func-
tion U(f |d) is the summation of prior energy U(f) and the
likelihood energy U(d|f) [11].

U(f |d) = U(f) + U(d|f) (12)

4.1. The Prior Model

The spatial cohesion can be modeled by the Ising
model[11]. The prior energy is given by:

U(f) =
∑

(i,i′)∈N

β1fifi′ (13)

where N is the 4 nearest neighbors, β1 > 0 controls the
weight of the prior energy. The Ising model gives the
boundary length of targets. If the targets are cluttered, the
boundary length and thus the prior energy tend to be large;
if the targets are in blob shape, the boundary length and its
corresponding energy tend to be small. (Note alternative
8 or even 16 connected neighbors[19] could be considered
but would be slower.) The optimization of this prior energy
encourages spatial cohesion.

4.2. The Observation Model

The likelihood probability given an observation d at each
site S depends not only on the labeling of neighbor sites,
but also on the dual thresholds. It should reflects both the
spatial cohesion assumption and our knowledge on the fea-
ture distributions for the target and the background beyond
the dual thresholds. A simple model such as the Gaussian
distribution cannot achieve the goal. The Gaussian assump-
tion may not be true in many real situations and it can not
incorporate our knowledge on the dual thresholds.

We only consider the likelihood involving at most pair
site cliques, and will define the single site clique energy and
pair site energy respectively.

• Single Site Energy
The single site potential energy is defined as:

VC1 =
∑
i∈S

A(d) · β2 · fi (14)

A(d) = H(d− T1) + H(d− T2)− 1 (15)

where C1 are single site cliques, β2 > 0 control the
weight of single site energy. A(d) is a feature value
selection function. A(d) is nonzero only on points
with feature values d ∈ [0, T1] ∪ [T2, T ]. Under this
definition, if d ∈ [0, T1], minimization of the energy
encourages fi = ω1; if d ∈ [T1, T ], fi = ω2 is encour-
aged. The single site energy perfectly incorporates our
knowledge of the distribution of the target and back-
ground beyond T1 and T2.

• Pair Site Energy
The pair site energy is defined as:

VC2 =
∑

(i,i′)∈C2

B(d) · fi · fi′ · g(i′) (16)



B(d) = H(d− T2)−H(d− T1) (17)

g(i′) =
{

ζ fi′ = 1
η fi′ = −1 (18)

where C2 are pair site cliques. B(d) is nonzero only
on points with feature values d ∈ [T1, T2]. g(·) is a
function that defines the interaction between site i and
i′. The pair site energy encourages spacial cohesion.
ζ, η ≥ 0 controls the preference for targets or back-
ground. ζ > η favors the target; ζ < η favors the
background; ζ = η favors the majority in the neighbor
region.

The observation model is

U(d|f) =
∑
i∈S

A(d) · β2 · fi +
∑

(i,i′)∈C2

B(d) · fi · fi′ · g(i′)

(19)
The observation model may be treated as a special auto-
model[11] with selection functions based on feature values.

4.3. Parameter Estimation

With known dual thresholds, the energy can be mini-
mized by ICM[3] or simulated annealing[16]. In this paper,
we use simulated annealing with a Metropolis sampler[13].
The more interesting problem is how to estimate the dual
thresholds.

The optimal core-dual threshold determined by formulas
(9) and (10). The final ratio map will be similar to Figure
3. In that case, the threshold T1 (T2) can be computed by
gradient ascent (descent) as in equation (20) and (21). Oth-
erwise, more measures are needed to update the thresholds
in the correct direction.

We will explain how to update T1 in these cases. From
the design of the energy functions, it is obvious that the val-
ues in the ratio map for t < T1 are expected to be large
when the energy is minimized. If this is the case, and the
ratio map curve around T1 is flat, the value of T1 is an ac-
ceptable one. However, we update T1 in increasing direc-
tion to ensure the uniqueness of T1; if the values are very
small instead, T1 is selected too small. We call this T1 un-
reliable. Similar analysis applies to updating T2: when the
values in the ratio map for t > T2 are too large, the selec-
tion of T2 is too large. We call this T2 unreliable. T1 and T2

may not be unreliable at the same time.

T i+1
1 = T i

1 + µ1∇Tmap(T i
1) (20)

T i+1
2 = T i

2 − µ2∇Tmap(T i
2) (21)

where µ1, µ2 > 0 are step sizes.
The quality of classification is measured by the prior en-

ergy (13). Smaller energy generally corresponds to better
classification. Unfortunately, it is not always true. For ex-
ample, when T1 = 10 and T2 = 25, the prior energy is 0

because no pixels are classified as targets; when T1 = 82
and T2 = 137, the prior energy is 3968. The classification
result is acceptable only if the prior energy is low and both
T1 and T2 are reliable. When one of T1 and T2 is unreliable,
the prior energy is unreliable and the classification result is
unacceptable.

The dual threshold estimation algorithm in one iteration
is summarized below:

ParameterEstimation(T1, T2)

1 Treliable1 = true;
Treliable2 = true;

2 Estimation

2.1 Ts = T1+T2
2 . Initial classification using Ts.

2.2 Energy minimization of (12) using Simulated an-
nealing given T1 and T2. The result is Resultm

2.3 Compute ratio map Tmap and prior energy
Eprior.
(a) If Tmap(T1) < ξ1, Treliable1 = false

IF T2 − T1 < 2, T2 = T2 + 1
ELSE T1 = T1 + 1

(b) IF Tmap(T2) > ξ2, Treliable2 = false

IF T2 − T1 < 2, T1 = T1 − 1
ELSE T2 = T2 − 1

(c) Update T1 and T2 by equation (20) and (21).

ξ1, ξ2 reflect our confidence on the knowledge about the dis-
tribution of targets and backgrounds beyond T1 and T2. For
example, we can set ξ1 = 0.98, ξ2 = 1− ξ1.

The simultaneous minimization of the energy and the es-
timation of the dual thresholds is given below:

EnergyMinimization

1. Initialization T 0
1 ,T 0

2 ,Emin,Resultm and Trust=false

2. DO i← i + 1

• Trust=false
• (T i+1

1 , T i+1
2 )← ParameterEstimation(T i

1, T
i
2)

• IF T i+1
1 and T i+1

2 are both reliable,
update Resultm,
Trust = true,
Emin = min(Eprior,Emin)

UNTIL i > imax OR (T i+1
1 = T i

1,T i+1
2 = T i

2)

3. Check validity

• IF Trust = false OR IF Eprior >> Emin

No object detected.
• ELSE accept the result

The algorithm is robust to initialization. The dual thresholds
are only affected by the confidence ξ1 and ξ2.



Figure 6. An image captured by a surveillance camera at sea and
segmentation results. Left to right: original image containing two
small ships, its histogram (sky contribution is significant), seg-
mentation results by the MRF model and QCC when T1 = 195,
T2 = 212. Note some regions of sky are darker than some of the
water and a single threshold cannot segment the scene.

5. Deterministic Energy Minimization

Above algorithms provide a principled way to estimate
the dual thresholds and minimize the posterior energy si-
multaneously. The stochastic energy minimization by sim-
ulated annealing is slow. In many applications, the scene
content is slowly changing and we can justify the use of
thresholds over a period of time. But applying the thresh-
olds in applications like surveillance, target or people track-
ing, must be real time.

In [4], a run time algorithm called Quasi-Connected
Components (QCC) was proposed as a grouping method
for a visual surveillance and tracking system. QCC assumes
the low threshold Tl and the high threshold Th. An image
pixel whose feature value is greater than the high threshold
is classified as a target pixel. For image pixels with fea-
ture values between Tl and Th, they are classified as target
pixels only if they are quasi-connected with a region con-
taining at least one pixel whose feature value is greater than
the high threshold. The quasi-connected components differ
from traditional connected components in that the compu-
tation is carried out using a generalized neighborhood sim-
ilar to N16[19], but more efficient because it uses a reduced
image. This multi-scale scheme improves the computation
speed and the generalized neighborhood automatically fills
small gaps. From the description of QCC, it appears to
achieve the minimization of the posterior energy (12). It is
a deterministic energy minimization method given the dual
thresholds with the gap filling ability.

Unfortunately, Boult et. al. did not give a theoretical
analysis for the method, nor propose a systematic way to
determine the dual thresholds. The MRF model proposed in
this paper provides a theoretical foundation for the method.
We also give an algorithm based on ratio maps to determine
the core-dual thresholds. In the MRF model, we need to set
ζ < η in equation (18) because the QCC algorithm naturally
favors the background.

Figure 6 shows an image captured by a shipboard cam-
era, and segmentation results by the MRF model and QCC
given the same dual thresholds. The segmentation results
using these two methods are very similar. However, QCC

is much faster, supporting real-time segmentation and track-
ing. Operationally one can use the MRF running at a slower
frame rate to dynamically determine the core-dual thresh-
olds for QCC, and use the QCC on a per-frame basis. We
are currently looking at using a Kalman filter to “track” the
MRF-produced thresholds and provide for smoother transi-
tions between estimations. A second issue for this is tempo-
rally adapting the “window” used in threshold estimation,
especially in any image where apparent target sizes vary
rapidly over the image, as is the case in our omni-directional
image.

6. Symmetric Subtraction
In this section, we give a histogram based method for

estimating dual thresholds directly. The histogram can be
represented as a mixture model:

P (x) = P (ω1)p(x|ω1) + P (ω2)p(x|ω2) (22)

where P (ω2) = 1− P (ω1) and

P (ω1) =
Size(target)
Size(region)

(23)

The proposed MRF model assumes the trailing distribu-
tion beyond Tmax is ignorable. Otherwise, they will be clas-
sified as the background. In Figure 6, our targets are small
ships, but the sea is classified as the target due to the sig-
nificant trailing distribution from the sky. The solution is to
sample in small regions, such as 4-8 times of the target size.
For many problems, the estimated size of targets is known.
From equation 23, smaller regions result in more notice-
able contribution from small targets. Also, the histogram
from the background tends to be an approximately symmet-
ric single mode (see histograms in Figure 6 and Figure 7) in
small regions.

When the histogram from the background can be treated
as symmetric, and half of the histogram is known only from
background, then we can subtract the background histogram
from the whole histogram as defined by equation (22), the
remaining histogram is only from the target. The symmetric
subtraction algorithm is given below:

SymmetricSubtraction

1 Compute Histogram for window as P (x)

2 Detect the dominant peak as background mean µ2

3 Get the right background histogram P r
2 (x)

4 Fold P r
2 (x) as the left background histogram P l

2(x)

5 Subtract P2 from P (x) as target histogram P1(x)

6 Compute the mean of target as µ1

7 Compute variances for background σ2 and target σ1



Figure 7. Detection of ships on sea. Left column is enlarged ship
images, second are their histograms, third column are their seg-
mentation result by the MRF model, right column are the segmen-
tation results by symmetric subtraction and QCC.

Figure 8. Detection of cars in thermal image. Left to right: original
image, detection results from the MRF model (starts from T1 =
100, T2 = 200 and stops at T1 = 138, T2 = 152). Right is
detection results with QCC.

8 T1 = µ1 − λσ1, T2 = µ2 + λσ2, λ > 0

The relationship between dual thresholds and classifica-
tion errors depends on the concrete forms of spatial likeli-
hood distribution, which is unknown for real problems. So
the steps in determining the core-dual thresholds are often
heuristic. The underlying assumption is that pixels with fea-
ture values less than the mean feature value of the target are
more likely to be target pixels. A similar assumption is ap-
plied to the background. Figure 7 and Figure 8 show the
detection of very small targets using the MRF model and
symmetric subtraction. Symmetric subtraction works well
when the sampling region is small and will often fail if the
background is significantly multi-modal within the window.

7. Conclusion

This paper showed that two thresholds are better than
one. Because the two thresholds are applied only in the di-
rect neighborhood of the target, i.e. near its core, we call
this approach core-dual thresholding. The core-dual thresh-
olding allows effective use of the weak constraint of spatial
cohesion, and with only mild assumptions, is provably bet-
ter than just applying the single “optimal” Bayesian thresh-
old. The paper shows how to use the MRFs to simulta-
neously segment and determine the optimal values for the
core-dual thresholds. It then explored QCC approximations
that are much faster than MRFs, and which are suitable to
real time implementation and discussed how to use them to
set the MRF thresholds for a real-time QCC implementa-
tion. Two real examples demonstrated the approaches.
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