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ABSTRACT

This paper reviews nearly a decade of work on multi-
camera sensor networks combining multiple omni-
directional imaging sensors, traditional stationary cameras
and pan-tilt sensors. It reviews significant issues, design
constraints and accomplishments from the DARPA VSAM
project and the commercial systems based on that early
work. With commercial intelligent camera networks
deployed with hundreds of sensors, we review the key
components in effective “distributed video surveillance,”
then discuss the major open issues, including hardware-
accelerated algorithms needed for increasing resolution
while reducing power, and the issues of mobile
surveillance. We briefly review our recent results in these
challenging areas.

1. INTRODUCTION

Intelligent networked video surveillance is a well-
established commercial technology. While video-based
research has been developing for more than two decades,
significant advances in video-surveillance began in the
mid-90s, including the DARPA Video Surveillance and
Monitoring (VSAM) project in the US and ESPRIT funded
efforts in the EU. In the VSAM effort, the main outdoor
demonstration included a dozen different cameras with
distributed processing and network communications
integrating algorithms from teams including static and
PTZ cameras [6], Airborne Cameras [10] and omni-
directional cameras [2]. The technology and the key
investigators from each of these three teams became the
core of commercial video-surveillance products from
ObjectVideo, Sarnoff/Pyramid Vision, Guardian Solutions
and specialized systems from RemoteReality.

Visual Surveillance is a broad area and no amount of
review in a workshop paper will cover it adequately, so we
will not try. Good reviews of the state-of-the-art at the turn
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of the century surveillance systems can be found in a
special issue of IEEE PAMI from August 2001 and the
Proceeding of the IEEE, October 2001 and more recent
review in Image and Video Computing July 2004. Recent
work can be found in many venues with concentrations in
regularly held IEEE Workshops on Visual Surveillance
(VS), Advanced Video Surveillance Systems (AVSS) and
Performance Evaluation of Tracking Systems (PETS).

Intelligent video surveillance is a systems level problem
with 6 major components:

Sensor Architecture

Low-level detection/processing algorithms
Hardware/Computation architecture
Software/Communication architecture
User-Interface

Higher-level algorithms for combining data and
filtering out uninteresting events

I

One could write thesis on any one of these, but this paper
is a high-level review of the first four components in terms
of constraints, system design issues and open issues. This
paper draws on nearly a decade of networked intelligent
video surveillance systems development by Dr. Boult' and
students and introduces the ongoing efforts of the team at
the Vision and Security Technology Laboratory at the
University of Colorado at Colorado Springs.

Dr. Boult’s first efforts on multi-camera networked video
surveillance include both omni-directional and other
traditional video sensors, as part of the initial DARPA
VSAM effort [8], and on the ONR MURI program. Dr.
Boult continued to lead the development of systems that
then moved through initial field-testing for the DARPA
Small Unit Operations program to multi-week field testing
at several Army bases as part of the Army
SmartSensorWeb program, eventually leading to wireless
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Figure 1: Omnicam imaging model.

geo-spatially enabled commercial systems developed for
Guardian Solutions and Remote Reality [3].

In each area of this review, we cover the limitations and
introduce the ongoing SEE PORT effort, which tackles the
much harder problem of surveillance and tracking from
moving vessels and our ongoing FIINDER effort, which
addresses low-power networked detection systems with
hardware accelerated mega-pixel sensors.

2. SENSOR ARCHITECTURE AND LOW-
LEVEL DETECTION

The first issue that must be addressed in an intelligent
sensor system is the selection of the sensor(s) — if you
cannot sense the target, no amount of post processing is
going to find it. The issues here include selection of the
imaging technology and the lens system. For the basic
sensor technology, the choices are visible sensors
(CCD/CMOS), an intensified low-light sensor, or a
thermal or LWIR sensor. For each technology there is also
the potential choice of the resolution of the sensor, with
“analog” sensors supporting CIF (320x240), NTSC/QCIF
(640x480), and with digital sensors supporting these plus
1, 3 or 5 mega-pixel resolutions at 8, 10 or 12 bits per
pixel. A major issue in these decisions is the cost of the
sensors, (e.g. a LWIR sensor costs $30-$80K), as well as
the lighting.  Since the surveillance is often most
important at night, a true cost comparison must include
the costs of lighting along with the sensors’ resolutions,
(e.g. installation of a single wide-area lighting system may
cost $50K-$70K per pole).

Lens choices impact both the field of view and range to
target. For a traditional lens, the tradeoff is well-known.
For the catadioptric omni-directional sensors with which
we have worked, it is less obvious. As seen in Figure 1,
these sensors use a mirror to collect the scene light and the
camera points at the mirror. If the mirror is pointed down,
(or up) the system has a hemispherical, or more field-of-
view, seeing all around the camera. The resulting sensor
has non-uniform resolution. The non-intuitive part is that
the resolution is maximum along the horizon, where

targets are most distant. If the mirror is imaged at the
center in a QCIF omni-image, there will be a 480 pixel
mirror radius and about 1500 pixels on the horizon, or
about 4.2 pixels per degree resolution. In comparison, a
standard camera has 4.2 pixels per degree when using a
150 degree lens, which means it would require 3 such
cameras to watch the horizon. Though omni-directional
sensors cost more, this resolution/FOV tradeoff is the
reason that omni-cameras are frequent components in Dr.
Boult’s surveillance work [4].

Tightly coupled to the sensor architecture is low-level
detection — if it cannot be detected, no amount of higher-
level architecture will help. To be viable commercial video
surveillance systems, the systems need to reliably and
robustly handle small and non-distinctive targets from
great distances. The need for detection of small targets at
a distance is a conflict of security concerns versus cost.
Distance translates to response time — the goal of security
is not only to record events but also to respond to them
while they are transpiring. Therefore, it is necessary to
detect events far enough in advance to respond. While one
could increase standoff distance by increasing the focal
length of the imaging system, this results in a narrowing
FOV and reduction of the overall imaged area, which
means that protecting a reasonable area requires numerous
cameras, proving to be generally cost prohibitive. Figure 2
shows the impact of the minimum size detection target on
the number of sensors needed to cover the staging area of
an airfield. While minimum target size is clearly a
function of the algorithms, it is also clear that sensor
resolution impacts this as well; for a fixed minimum target
size, a mega-pixel sensor covers considerably more area
than a NTSC or CIF sensor.

In a real system, end users would investigate each alarm,

Figure 2: Impact of minimum target size on number
of sensors required to secure an area. Left assumes
minum target size of 48 pixels (6x8 pixel human
target) and requires 33 sensors to cover the staging
area. Right diagram is assuming a minimum size of
12 pixels (3x4 pixel human target) and requires only
5 sensors. If false alarms accumulate independently,
the impact of number of sensors on overall system
false alarms is obvious.



and in many of the current government deployment
projects, the requested goal is to produce less than 3 false
alarms (FA) per day. For these military applications,
undetected targets could be, literally, deadly, so the miss
detection (MD) rates also need to be low, with stated goals
in multiple programs for a less than 5% miss-detection on
very distant targets (1-2km). Again, the overall minimum
target size has a significant impact on system false alarm
rates, though for almost any algorithm, the FA/MD rates
are strongly impacted by the choice of minimum target
size. Having a formal model that allows one to make such
tradeoffs is therefore an important requirement for a video
surveillance algorithm.

With each NTSC video containing 10*° potential target
regions per camera per hour, achieving acceptable False
Alarm/Misdetection Rates place very strong demands on
the low-level processing of the system. In [4,2] we
investigated formal methods for analyzing FA and MD
rates for this type of problem. These papers are, to our
knowledge, still the only work to formally model pixel
group aspects that allow meaningful FA/MD for a video
surveillance system. These papers analyzed the grouping
that allowed us to address the “signal-level” FA and
impacts of random noise. However, they did not address
nuisance alarm (NA) rates, where lighting, water or brush
produce real changes that are “significant,” but not
interesting motion. To address this class of nuisance
alarms, we added saliency models, similar in spirit to those
used by [10]. However, even with salience models, birds,
bugs and other animals are a significant nuisance issue. If
one is using only 6-12 pixels on target, then distinguishing
a crawling human from a dear or other large animal is
quite difficult.

This then brings us back to the sensor architecture. An
effective low-level detection can detect/track small targets,
but assessment and identification need more resolution,
which suggests a multi-camera system where the detected
targets are then handed-off to a Pan-Tilt-Zoom (PTZ)
sensor. As is well-demonstrated in the VSAM effort, an
effective way to address this issue of identification would
require the cameras to be calibrated and use geo-spatial
coordinates, passed through the network, to pass control
from one sensor to another.

With a PTZ in a lower security setting, the system can also
use a temporal stop-and-stare approach to trade
probability, or time to detection, against cost. Instead of 5
sensors, the left side of Figure 2 could be 5 stops on a PTZ
tour. It becomes most interesting when the “PTZ” in
question becomes a self-contained wireless smart camera
like that shown on the right. This sensor is the core of the
Guardian Solutions Threat Watch system, commercially
released in 2004, that combines an embedded vision
processor with 25x zoom rugged PTZ, IR illumination,

802.11B networking. Sold with
special tripods to allow 4 units,
plus a laptop, to coordinate to
protect sensitive cargo for the
military or provide a portable
electronic-fence capability
wherever needed.

While sensors and low-level
processing are probably the most advanced components of
intelligent video systems, there are three important open
issues:  no-illumination sensors, moving sensors, and
increasing sensor resolution.

Visible or NIR sensors still require illumination, so an
important issue is moving to thermal and intensified
systems. While the equipment is more expensive, the
reduced infrastructure and power costs often tip the
balance.

A larger issue is that of low-level detection, tracking and
control when the sensors themselves are moving.  This
makes background subtraction impractical without
specialized hardware such as that developed by Sarnoff.
Using COTS hardware, we are addressing this in our SEE-
PORT effort using both visible and LWIR 360° detection
and tracking from moving ships. Because we could not
use standard background subtraction, we needed a new
approach to detect targets. Based on local saliency, we
developed a new algorithm to determine dual thresholds,
called symmetric subtraction, see [9], and are now
developing new window-variance based detectors for
improved sensitivity in more complex wave clutter.
Another approach is using cascaded Haar-based classifiers
to directly “recognize” particular classes of targets.

The SEE-PORT effort also includes a PTZ for acquiring
images with sufficient resolution for assessment
identification, automated identification of targets that have
been previously detected, and an architecture for
integration with other sensors, (e.g. onboard sonar and
onshore radar and cameras). While PTZ slew-to-cue has
been demonstrated by many groups, and our earlier
versions are in commercial products of RemoteReality and
Guardian Solutions, the problem for SEE-PORT is more
difficult because of the potential latency involved with a
moving observer. By the time the PTZ gets to the target, it
may no longer be where we thought it was, or conversely,
we may no longer be located at our previous position.
Furthermore, with many targets we must develop a
schedule for when the PTZ should move from target to
target, and hence may need to predict where the target will
be even when we can no longer see it.

To address this problem, we use predictive motion models
fed into a multi-target priority-scheduling algorithm. An
extended Kalman filter, with target disambiguation,



including image-based properties of the targets, predicts
target position with uncertainty. Using the confidence data
and predicted location, we developed a program to
schedule the slew of a PTZ to integrate high confidence
targets that could be a threat and targets whose uncertainty
is becoming too large. Because both the omni-camera and
PTZ will be moving/rocking on a ship, the prediction
requires an ego-motion model for the vehicle motion. We
then combine the target motion model, sensor motion
model and latency models for all the computations and
communications to predict where the target will be.

3. HARDWARE/COMPUTATION

Real-time video processing is a very computationally
intensive task and, if the system is not designed well, can
swamp most communication networks.

The early VSAM systems at CMU mostly used tower-type
500Mhz PCs and Unix workstations, computing CIF data
at around 10-15fps. While Sarnoff used custom hardware
boards, which eventually lead to their Arcadia chips, Dr.
Boult’s efforts were computing 30fps at 640x480 using an
embedded 233Mhz system.

As algorithms improve from those early versions, they
have required considerably more computing; ObjectVideo
uses dual 3Ghz processors for 4 QCIF channels and
Guardian Solutions uses a 2.4Ghz for 4 QCIF channels.
More significantly, as higher-resolution sensors are
starting to be used, they demand considerably more
powerful approaches.

High-end PC-class processors are still the dominant forms
of computing intelligent video surveillance. ObjectVideo
recently introduced “ObjectVideo on board” versions using
a TI DaVinci DSP to provide their core computation at
15fps on CIF video. Their goal is reduced cost and
reduced system size, not increased performance nor the
support for larger sensors.

Moving to higher-resolution sensors is, however, critical to
improving overall system performance. This is probably
the most significant open issue-- how to accelerate the
detection/tracking techniques using hardware accelerations
such as FPGA and/or local DSPs. As we move to
programs using 3, 5 and soon, 16Mpixel sensors, we are
focusing on FPGAs to address this.

In FIINDER (FPGA-enhanced Intensified Image Network
Detectors with Embedded Recognition), we have been
using the Elphel 333 network cameras with a Spartan 3,
an Etrax processor, 64M of memory and a 3Mpixel sensor.
We have designed a version of our Cascaded Haar-wavelet
which, in simulations, requires an average of 6ms (worst
case is, however, 300ms), and will be porting it to the new
SMpixel version of the camera this fall. This approach is

not simply taking previous video surveillance techniques
and adapting them to an FPGA; it is looking at what we
can do well in hardware and developing new approaches to
exploit that ability.

4. SOFTWARE/COMMUNICATION

At the core of any distributed system is its software and
communication architecture. We break our discussion off
into the issues of the network protocol and the overall
software architecture.

4.1 Network Protocols

Due to the potentially massive amounts of video data
and the need for this to be real-time, design must address
some means of communicating target information and
cannot simply use standard streaming video protocols. Dr.
Boult was part of the team to define the original VSAM
communication protocol, [7].

The VSAM protocol represents key target properties as
well as image data. It was sufficient for the dozen or so
sensors used in the VSAM, but had limitations that
prohibited its use in larger systems, including using a
single central coordination node and a fixed packet
structure.  Dr. Boult enhanced that protocol as he
developed architectures for wireless video [3] to support
hundreds of nodes. The most critical extension for
scalability was adaptive bandwidth control. The overall
Scalable Network architecture is shown in Figure 3. The
SPM (Sensor-Processing Modules) do the actual video
processing and detect/track targets. They then send these
into the distributed architecture with a description of the
target, including its geo-location and a localized image
chip of an area around each target. The AGM (Archive
Gateway Module) provides traffic routing, reliable multi-
cast support, archiving to support replay on lightweight
nodes and provides traffic bandwidth adaptation. The
operator control units (OCU) are a display and control user
interface.

Scalable Network Architecture
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Using this extended protocol Omni camera
has allowed large deployments -
on limited bandwidth, which Dr.
Boult has used to install a sensor

PTZ camera

network with over 100 sensors
including 88 camera covering
2Km of a major US port, all
using a single 802.11B channel.

In a similar manner, using our own
reliable protocols in addition to low-
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Both visible and thermal Omni-Cameras will be used and

requiring multiple programs to eventually 4 omni-cameras and 4-6 PTZ will be used on larger vessels. Current
follow those guidelines. For two Development is using 1.2Mpixel visible and 640x480 LWIR but designing
of our ongoing ONR projects, we algorithms for 16Mpixel visible sensor.

have moved to a SOAP-based

protocol. For the SEE-PORT project (see Figure 4), this
provides for a scalable and flexible way for other sensors to
be integrated and multiple “users” to view the data and
potentially control the PTZs.

5. CONCLUSIONS

Networked distributed video surveillance has moved from
an academic research area to major commercial efforts
with installations often involving hundreds of sensors.
This paper reviewed some of the core lower-level issues
and discussed open area for continued research. The
major areas of high-level algorithms and user-interfaces
are also critical areas for research.
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